Goals & Objectives: To understand the differential diagnosis & management of constipation in the pediatric patient:

- Name 8 diagnoses in the differential diagnosis of constipation.
- Identify at least 5 “red flags” in the history of a patient presenting with constipation.
- List the medications (oral and rectal) used in constipation and their indications.
- Write out the behavioral and dietary management of constipation.

Pre-Meeting Preparation:
Please read/review the following enclosures:

- “Constipation and Encopresis in Childhood” *(PIR, SEP 2015)*
- Patient Resources: Parent Handout; Stool Diary; Management Plan

Conference Agenda:

- **Review** Constipation Quiz
- Complete Constipation Cases
- **“Hands-on” Activity:** Using a finger inserted into a balled fist, simulate the DRE findings of the following conditions: Hirschsprung’s, neurologic dysfunction, functional constipation, and normal anal tone.

Post-Conference: Board Review Q&A

Extra-Credit:

- Childhood Defecation Disorders *(IFFGD, 2006)—parent-friendly review*
- Prevalence, Symptoms, & Outcome of Constipation in Infants & Toddlers *(JPeds, 2005)*
- Evaluation & Treatment of Constipation: Recs from NASPGHN *(CPG, 2014)*
- Evaluation and Treatment of Constipation in Infants and Children *(American Family Physician, 2014, alternate review article)*

Constipation and Encopresis in Childhood

Jennifer M. Colombo, MD,* Matthew C. Wassom, PhD,† John M. Rosen, MD*

*Division of Gastroenterology, Children’s Mercy Kansas City, University of Missouri at Kansas City School of Medicine, Kansas City, MO.
†Division of Developmental & Behavioral Sciences, Children’s Mercy Kansas City, University of Missouri at Kansas City School of Medicine, Kansas City, MO.

Educational Gap

A recent study in Pediatrics concluded that 25% of children with functional constipation continued to experience symptoms at adult age, suggesting that referral to specialized clinics at an early stage for children who are unresponsive to first-line treatment may help improve outcomes. (1)

Objectives

After completing the article, the reader should be able to:

1. Know that constipation is a common problem in childhood with a diverse clinical presentation.
2. Understand that functional constipation is a symptom-based diagnosis that does not require extensive testing.
3. Recognize that most children who present with fecal incontinence or encopresis have associated constipation.
4. Describe the treatment of constipation and encopresis, which should include a medical-behavioral approach that focuses on maintaining soft and regular bowel movements and improving toileting behavior.

INTRODUCTION

What do the following children have in common?

- A 12-month-old girl with hard pellet-like stools.
- A 3-year-old girl with frequent complaints of dysuria and hard stools.
- An 8-year-old boy with a weekly stool that is large enough to clog a toilet.
- A 12-year-old boy with daily loose stools in his underpants.

Answer: They share a familiar diagnosis: functional constipation.

Constipation is a common pediatric problem and parental concern. In general, a complaint of constipation accounts for 5% of general pediatric office visits and 25% of all referrals to pediatric gastroenterologists. The estimated worldwide prevalence is 0.7% to 29.6%. (2) Constipation rarely signifies a serious disease, but it has an unfavorable impact on patient quality of life, parental satisfaction, and health-care costs. Children with constipation often complain of abdominal pain, decreased appetite, and painful stooling, which can be distressing to both the child and the parents. Common transient problems with defecation, if unrecognized and untreated, can develop into disruption of toilet training and...

AUTHOR DISCLOSURE Drs Colombo, Wassom, and Rosen have disclosed no financial relationships relevant to this article. This commentary does not contain a discussion of an unapproved/investigative use of a commercial product/device.
interference with achieving and maintaining bowel continence. The chronic nature of constipation and common misconceptions about the symptoms and pathophysiology of constipation can lead to frustrating experiences for patients and families. Multiple office visits, emergency department visits, and unnecessary diagnostic testing contribute to the rising cost of health-care.

DEFINITION

Defining constipation remains a challenge because stooling patterns are highly variable in childhood. Generally, infants have an average of three to four stools per day and a toddler may have two to three stools per day. (3) By the age of 4 years, children have a pattern and frequency of bowel movements that are similar to those of adults. (4) A consistent, reliable method for diagnosis allows for better understanding of and communication about the disorder. Constipation can be roughly defined as infrequent passage of hard, uncomfortable stools that are distressing to the child.

Encopresis is the repeated passage of feces into inappropriate places (usually the underpants). Some have suggested replacing the term fecal incontinence with the term encopresis in the literature to clarify that most children treated for this problem have either current or intermittent constipation. However, we continue to reference the term encopresis along with fecal incontinence due to the prevalence of this term in the literature. Fecal incontinence/encopresis is often the result of liquid/soft stool leaking around a large mass of stool in the rectum, which clinicians should describe as constipation with overflow.

Encopresis differs from delayed bowel training in that children with encopresis pass liquid/soft stool in their underpants unknowingly because of constipation with overflow and difficulty feeling the indication to stool. Children with encopresis also generally do not have accidents of formed stool whereas children with delayed bowel training simply refuse to use the toilet and have regular bowel movements in their diapers or underpants. Children with encopresis often also use the toilet to pass formed or semi-formed stool.

Children with delayed bowel training may refuse to use the toilet because of fear, anxiety, oppositional behavior, skill deficits, or lack of interest or motivation. Bowel continence is expected to occur by the age of 4 years. Encopresis is not a developmental variation after the age of 4 to 5 years.

PATHOGENESIS

Causes for the development of constipation include inadequate hydration, low-fiber diet, slow intestinal transit, minimal activity level or inactivity, and behavioral factors. Because some or all components may play a role in the development of constipation and encopresis, these conditions should be conceptualized in the biopsychosocial framework. Constipation can manifest at any age and most commonly presents during a period of transition in the child’s life. In infancy, constipation may present when the breastfed infant is transitioned to formula or whole milk or when transitioning from pureed to solid foods. In toddlers, constipation may arise when toilet training begins. In childhood, constipation is more likely when a child enters school and is using a toilet away from home.

Normal Anatomy and Physiology

The internal anal sphincter, external anal sphincter, puborectalis muscle, and rectum must work together for a productive bowel movement. The internal anal sphincter and the rectum are composed of circular smooth muscle. The external anal sphincter and puborectalis muscle are made up of skeletal muscle. When the rectum is empty and collapsed, the internal and external anal sphincters are tonically contracted, maintaining continence. The puborectalis muscle forms a sling around the rectum, pulling the rectum forward when it is contracted and increasing the angle acuity between the rectum and the anus.

When a bolus of stool reaches the rectum, distension of the rectal wall signals the urge to defecate. The internal anal sphincter reflexively relaxes and the external anal sphincter contracts. There are two options at this time: 1) squatting or sitting on the toilet, relaxing the puborectalis muscle, straightening the anorectal angle, relaxing the external anal sphincter, and increasing intra-abdominal pressure to evacuate stool or 2) maintaining and increasing contraction of the external anal sphincter and gluteal muscles to force stool back into the rectum. When the stool is pushed back into the rectum, the sensation or urge to have a bowel movement disappears.

Constipation and Withholding

When children do not recognize or respond to the urge to defecate, stool is retained in the rectum, the urge to defecate subsides, and the rectal wall stretches to accommodate the fecal load. Repeated withholding or avoidance of defecation leads to larger stool load in the rectum, causing further stretching and potential thinning of the rectal wall. The retained stool becomes larger, harder, drier, and more difficult to pass the next time the urge arises.

Prolonged and repetitive stool withholding and avoidance of defecation leads to large amounts of retained stool in the rectum. The large fecal mass becomes impacted and...
extremely difficult to evacuate. Peristaltic movement of the colon pushes semiformal and liquid stool lower in the colon, resulting in leakage around the large mass of stool into the child’s underpants. This is especially true if the impacted fecal mass is putting downward pressure on the anorectal complex, distending a normally tonically contracted outflow barrier and making voluntary closure of the anal sphincter more difficult. Therefore, a common complication of unrecognized and untreated or undertreated chronic constipation is encopresis or fencal incontinence.

If chronic constipation and encopresis are untreated, they can lead to other significant clinical issues, such as enuresis, frequent urinary tract infections, rectal prolapse, or pelvic dyssynergia. The hard fecal mass in the rectum puts pressure on the urethra and bladder, causing incomplete evacuation of the bladder. Incomplete bladder evacuation can predispose children to urinary stasis and sensations of urgency followed by hesitancy. Chronic fecal soiling exposes the urethra to bacterial pathogens that can ascend into the bladder, causing infection. In addition, the enlarged dilated rectum may result in decreased tone and contractility. Thus, increasing intra-abdominal pressure (necessary for defecation) may ultimately result in rectal prolapse during a defecation attempt. Finally, chronic constipation and encopresis can contribute to the development of pelvic dyssynergia, or pelvic floor dysfunction, in which pelvic floor muscles contract instead of relax with attempted defecation, continuing the cycle of incomplete rectal evacuation.

There are many reasons why a child may start to withhold stool or avoid defecation. Stool withholding may be an intentional behavior to avoid unpleasant sensations or associations with defecation. It may be a response to a painful bowel movement that is caused by a stool that was larger or harder than normal, an anal fissure, or a perianal infection. The child may not want to use the toilet at school due to limited time, lack of privacy, or concern about restroom cleanliness, choosing instead to withhold stool until arriving home. A child may not want to interrupt an enjoyable activity to have a bowel movement. Finally, stool withholding may be a learned avoidance behavior that is less intentional or even unconscious due to repeated painful bowel movements.

Early recognition of stool withholding can prevent chronic constipation and long-term defecation problems. Certain behaviors, such as extending and crossing legs, clenching gluteal muscles and the external anal sphincter, and avoiding the squatting position, are compatible with active stool withholding. These behaviors can be confusing for parents who may interpret them as strenuous efforts to have a bowel movement.

DIFFERENTIAL DIAGNOSIS

Some of the multiple causes for constipation (Table 1) are reviewed in this article. Most of the diagnoses discussed are exceedingly rare. Functional constipation is most common in childhood.

Functional

Infant dyschezia describes healthy infants younger than 6 months of age who strain excessively with bowel movements. They appear to be in significant discomfort, often crying or screaming, turning red in the face, and bringing their knees up to their abdomens, before eventually passing soft stools. Symptoms abate following the stool passage. Infants of this age have not yet coordinated increasing intra-abdominal pressure with relaxation of pelvic floor muscles to have a bowel movement. Infant dyschezia often spontaneously resolves around 6 months of age.

Functional constipation and functional fecal retention are synonymous and the terms are often used interchangeably. Functional constipation refers to hard or infrequent...
stools in the absence of any other disorders, including neurologic, obstructive, endocrine, or metabolic, and is discussed in more detail throughout this review.

Neurologic

Hirschsprung disease (HD) is a congenital form of constipation in which the infant or child cannot evacuate stool due to a lack of ganglion cells in the myenteric and submucosal plexus of the intestinal wall. Without ganglion cells and nerve fibers to innervate the intestinal musculature, the affected colonic segment remains in a chronic contracted state.

HD should be considered in any newborn who has delayed passage of meconium (ie, beyond 48 hours after birth). Age at presentation may depend on the length of the affected intestine. Infants with long-segment HD develop signs of distal intestinal obstruction, which may include abdominal distention, vomiting, irritability, lethargy, and failure to pass meconium or stool. Enterocolitis with or without bowel perforation must be considered if the infants develop fever, bloody diarrhea, and continued abdominal distention. One of the most serious and possibly fatal complications of Hirschsprung enterocolitis is progression to toxic megacolon and overwhelming sepsis.

Infants with shorter segments of HD may not be diagnosed until childhood. They may experience intermittent abdominal distention and severe constipation that is refractory to standard treatment. They may also have poor growth or failure to thrive due to decreased caloric intake. Only rarely do children who have HD experience encopresis or inadvertent leakage of stool.

Anal achalasia is the failure of the internal anal sphincter to relax despite the presence of ganglion cells on biopsy. It is unclear if anal achalasia is a variant or mild form of HD.

Neuronal dysplasia and hypoganglionosis are rare disorders involving inadequate or inappropriate numbers of ganglion cells. These conditions are infrequent and incompletely understood. They can be associated with neurofibromatosis, multiple endocrine neoplasia type IIb, or Chagas disease.

Obstructive

Anal stenosis presents with painful and difficult defecation in infancy. This is due to the presence of a tight anal opening or ring.

Anterior displacement of the anus is a congenital variation in the placement of the anus. External anal inspection can reassure the clinician that anterior displacement is not present. Theoretically, the anogenital index can be calculated after careful examination and measurement of the perineum by dividing the distance (in centimeters) from the vagina or scrotum to the anus by the distance (in centimeters) from the vagina or scrotum to the coccyx. The normal anogenital index in females is 0.30 ± 0.09 and in males is 0.56 ± 0.2. Affected children have difficulty with defecation because they are not able to straighten the anorectal canal completely due to malposition of the anal sphincter complex in relation to the anus.

Meconium ileus causes delayed passage of meconium in children with cystic fibrosis. It is one of the earliest signs of cystic fibrosis and is almost always associated with pancreatic insufficiency. The meconium in infants with cystic fibrosis is much thicker than the meconium in unaffected children, which is attributed to an altered ratio of albumin and water concentrations. The viscous meconium and increased mucus production can lead to partial or total bowel obstruction. This is often recognized at birth or within the first few days of birth.

Strictures can occur anywhere in the intestinal tract. If they occur more distally, children often have symptoms of distal obstruction, including lower abdominal pain, abdominal distention, and infrequent or total lack of bowel movements. Strictures can be congenital or acquired due to necrotizing enterocolitis in infants or inflammatory bowel disease in children and adolescents.

Small left colon syndrome is a rare diagnosis that is most closely associated with infants born to women who have diabetes. Infants with signs of distal intestinal obstruction and a small left colon noted on barium enema should be screened for HD and cystic fibrosis because a small-caliber left colon is a common finding on barium enema due to the aganglionic segment in HD or as a result of meconium ileus in cystic fibrosis.

Other

Hypothyroidism may slow the motility of the gastrointestinal tract, leading to constipation. Other symptoms of hypothyroidism include fatigue; weight gain; shortness of breath; and changes in the skin, hair, or nails. This constellation of findings can help direct appropriate testing.

Celiac disease is an autoimmune sensitivity to gluten and gluten-containing products in genetically susceptible individuals. The clinical presentation of this disease is so variable that the “atypical” or nonclassic presentation of celiac disease is becoming more commonplace. Children may present with diarrhea, constipation, bloating, abdominal pain, poor weight gain, short stature, skin rash, or iron deficiency anemia. Evaluation for celiac disease should be considered in children who have constipation that does not respond to laxative therapy.
Chronic intestinal pseudo-obstruction manifests as severe altered motility of the intestinal tract. This rare disorder can be congenital or acquired. Children with this disorder experience recurrent signs and symptoms of bowel obstruction, such as vomiting, abdominal pain and distention, and constipation or diarrhea without an anatomic obstruction.

CLINICAL ASPECTS

Diagnosis of constipation relies foremost on an appropriate definition, including the symptom-based Rome III criteria for functional constipation. (5) Rome III defines functional constipation as two or more of the following (fulfilled at least weekly for 2 months) in a child older than 4 years who does not have irritable bowel syndrome:

1. Two or fewer defecations in the toilet per week.
2. At least one episode of fecal incontinence per week.
3. History of retentive posturing or excessive volitional stool retention.
4. History of painful or hard bowel movements.
5. Presence of a large fecal mass in the rectum.
6. History of large-diameter stools that may obstruct the toilet.

Similar age-appropriate criteria are also available for children younger than 4 years. A variety of supplemental tests should be applied only in the presence of warning signs or symptoms or with failure of constipation to respond to typical therapy. Test results should be interpreted in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.

The clinical history should include a description of stool frequency and quality, associated symptoms such as abdominal pain and rectal bleeding, growth pattern, continence and toilet training, presence or absence of withholding behavior, and symptom onset and duration. Delayed passage of meconium should raise suspicion for HD. Thin, ribbonlike stools also may suggest HD compared to the large bulky stools that often are found with functional constipation. Fecal incontinence should be directly assessed in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.

The clinical history should include a description of stool frequency and quality, associated symptoms such as abdominal pain and rectal bleeding, growth pattern, continence and toilet training, presence or absence of withholding behavior, and symptom onset and duration. Delayed passage of meconium should raise suspicion for HD. Thin, ribbonlike stools also may suggest HD compared to the large bulky stools that often are found with functional constipation. Fecal incontinence should be directly assessed in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.

Chronic intestinal pseudo-obstruction manifests as severe altered motility of the intestinal tract. This rare disorder can be congenital or acquired. Children with this disorder experience recurrent signs and symptoms of bowel obstruction, such as vomiting, abdominal pain and distention, and constipation or diarrhea without an anatomic obstruction.

CLINICAL ASPECTS

Diagnosis of constipation relies foremost on an appropriate definition, including the symptom-based Rome III criteria for functional constipation. (5) Rome III defines functional constipation as two or more of the following (fulfilled at least weekly for 2 months) in a child older than 4 years who does not have irritable bowel syndrome:

1. Two or fewer defecations in the toilet per week.
2. At least one episode of fecal incontinence per week.
3. History of retentive posturing or excessive volitional stool retention.
4. History of painful or hard bowel movements.
5. Presence of a large fecal mass in the rectum.
6. History of large-diameter stools that may obstruct the toilet.

Similar age-appropriate criteria are also available for children younger than 4 years. A variety of supplemental tests should be applied only in the presence of warning signs or symptoms or with failure of constipation to respond to typical therapy. Test results should be interpreted in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.

The clinical history should include a description of stool frequency and quality, associated symptoms such as abdominal pain and rectal bleeding, growth pattern, continence and toilet training, presence or absence of withholding behavior, and symptom onset and duration. Delayed passage of meconium should raise suspicion for HD. Thin, ribbonlike stools also may suggest HD compared to the large bulky stools that often are found with functional constipation. Fecal incontinence should be directly assessed in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.

The clinical history should include a description of stool frequency and quality, associated symptoms such as abdominal pain and rectal bleeding, growth pattern, continence and toilet training, presence or absence of withholding behavior, and symptom onset and duration. Delayed passage of meconium should raise suspicion for HD. Thin, ribbonlike stools also may suggest HD compared to the large bulky stools that often are found with functional constipation. Fecal incontinence should be directly assessed in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.

The clinical history should include a description of stool frequency and quality, associated symptoms such as abdominal pain and rectal bleeding, growth pattern, continence and toilet training, presence or absence of withholding behavior, and symptom onset and duration. Delayed passage of meconium should raise suspicion for HD. Thin, ribbonlike stools also may suggest HD compared to the large bulky stools that often are found with functional constipation. Fecal incontinence should be directly assessed in the context of the patient’s history and physical examination findings, which are sufficient for diagnosis in most cases.
reliable, sensitive, or specialized scales to determine stool burden, it is not clearly inexpensive, low-risk test, but even when using standard-posed treatment plan. A single abdominal radiograph is an imaging of constipation (with or without over amount of retained stool, allowing for a better understand-ing of rectal sensation (relaxation of the internal anal sphincter in response to rectal distension). Although not used as an isolated test to diagnose HD, clear demonstration of the rectoanal inhibitory reflex is sufficient to remove HD from diagnostic consideration.

Anorectal manometry may also have a role in determining rectal sensation threshold and the presence of anorectal dyssynergia, potentially directing therapy, including the addition of physiotherapy or biofeedback. High-resolution anorectal manometry with increased number of pressure sensors and enhanced computer analysis may better delineate anorectal sensory and motor function, but this test is not widely available in pediatrics.

Spinal imaging, including magnetic resonance imaging, should be considered in the child with constipation and other neurologic signs or symptoms, including lower motor dysfunction, lower urinary tract symptoms, and lumbosacral spinal abnormalities. The neurologic examination may yield normal results in constipated children with spinal cord abnormalities, but routine spinal imaging of constipated children is not recommended.

TABLE 2. “Red Flag” Symptoms

- Delayed passage of meconium
- Failure to thrive
- Bloody stools
- Severe abdominal distention
- Perianal fistula
- Absent anal wink
- Sacral dimple

Disease. Constipation rarely is the sole presenting symptom of hypothyroidism, electrolyte abnormalities, lead toxicity, or celiac disease, and routine screening for these diseases is not recommended. Routine allergy testing is also not recommended in evaluation of constipation, and cow milk protein restriction in young children for a limited time to assess the clinical response remains controversial.

History and physical examination generally precludes the need for radiography to diagnose functional constipation. Although the presence or absence of a fecal mass and determination of stool burden are important to direct therapy, abdominal radiography is usually not necessary. An abdominal radiograph may help parents visualize the amount of retained stool, allowing for a better understanding of constipation (with or without overflow) and the proposed treatment plan. A single abdominal radiograph is an inexpensive, low-risk test, but even when using standardized scales to determine stool burden, it is not clearly reliable, sensitive, or specific.

The indications for barium enema are extremely limited. Barium or other contrast enema is suggested but not required when constipation is accompanied by “red flag” symptoms (Table 2). It provides information about the caliber of the rectum and colon and may be useful if obstruction in the colon is suspected. It does not require any specific preparation and does not subject the patient to risk aside from radiation exposure. Gastrografin enemas in the setting of suspected meconium ileus may be diagnostic as well as therapeutic.

Further diagnostic tests when the clinician suspects HD depend on patient characteristics (age, health status) and test availability. Full-thickness rectal biopsy remains the gold standard for diagnosis and is performed under anesthesia, but rectal suction biopsy can be performed at the bedside without adjunct medication and is recommended in lieu of surgical biopsy as initial evaluation. Although rectal suction biopsy traditionally is performed in infants, it may also be sufficient in older children and teenagers. Aganglionicosis or hypertrophied nerves on rectal biopsy hematoxylin and eosin staining can indicate HD. Although the presence or absence of these findings is typically sufficient for determining or ruling out the diagnosis of HD, supplementary analysis may demonstrate aganglionic intestine with altered acetylcholinesterase morphology or absent calretinin expression. Anorectal manometry uses a small rectal balloon and anorectal pressure sensors to determine the presence or absence of the rectoanal inhibitory reflex (relaxation of the internal anal sphincter in response to rectal distension). Although not used as an isolated test to diagnose HD, clear demonstration of the rectoanal inhibitory reflex is sufficient to remove HD from diagnostic consideration.

Anorectal manometry may also have a role in determining rectal sensation threshold and the presence of anorectal dyssynergia, potentially directing therapy, including the addition of physiotherapy or biofeedback. High-resolution anorectal manometry with increased number of pressure sensors and enhanced computer analysis may better delineate anorectal sensory and motor function, but this test is not widely available in pediatrics.

MANAGEMENT

Constipation and fecal incontinence are clinical issues that require a thorough understanding of physiology, biology, behavior, and psychology for effective management. Therefore, a combined treatment approach is recommended. Although no objective clinical trials and data support a single treatment approach to constipation and fecal incontinence, we discuss a general management protocol. The management protocol can be divided into four major treatment components: 1) education about constipation and encopresis, 2) disimpaction or cleanout of stool, 3) maintenance laxative therapy and establishing regular bowel movements, and 4) behavior modifications to improve daily toileting behaviors.

Education

Education and reassurance comprise the first component in the management of functional constipation and encopresis.
or fecal incontinence and should continue throughout all stages of management. Education includes talking with the parents and the child about constipation and its influence on lower gastrointestinal tract functioning and overflow and fecal incontinence. Developmentally appropriate discussion of the anatomy and physiology of the lower gastrointestinal tract and defecation is important and visual diagrams can aid in this education. Many parents of children presenting with encopresis incorrectly assume that the child is soiling on purpose. Parents need to be educated that fecal incontinence is often involuntary and the result of overflow from constipation, deconditioning, or altered function of the rectum and pelvic floor as well as learned withholding behaviors in some children. Counseling can be provided to parents to help them establish a positive and supportive attitude toward their child during treatment. Counseling can help remove blame from the child and encourage the parents and child to join the clinician in addressing the symptoms. Clinicians should recognize and empathize with families about the stress and frustration surrounding constipation and fecal incontinence.

Disimpaction or Cleanout

The second component in the management of functional constipation is removal of the fecal impaction. Such removal decompresses the rectum, allows for the normal passage of stool, and prevents liquid stool from leaking around the fecal mass. If the fecal impaction is not removed, a child with functional constipation cannot achieve a normal stooling pattern, and fecal soiling may be exacerbated, which is highly frustrating to parents and children.

Among the approaches to disimpaction are high-dose oral laxatives, enemas, manual disimpaction, or admission to the hospital for nasogastric administration of a bowel cleansing agent. High-dose oral laxatives and enemas are equally efficacious, but the preferred method for evacuation of fecal impaction is via the oral route. Minimizing attention to the anus and rectum via oral laxatives can be important because these children have a history of unpleasant and painful experiences associated with defection. Current recommendations (Table 3) suggest the use of polyethylene glycol solution (PEG 3350) at doses of 1 to 1.5 g/kg per day for 3 consecutive days (up to 6 consecutive days if necessary) to achieve disimpaction. If PEG 3350 is unavailable, once-daily sodium phosphate, saline, or mineral oil enemas for 3 consecutive days are acceptable. Suppositories may be used in combination with high-dose oral laxatives to help promote evacuation of the fecal impaction. Manual disimpaction is rarely necessary and generally not advised except in cases of severe impaction and obstruction. If manual disimpaction is required, general anesthesia should be used to decrease the trauma associated with this procedure.

Maintenance Therapy

The third component in the management of functional constipation is maintenance laxative therapy to ensure regular passage of soft, appropriate-sized stools. Such maintenance can eliminate painful defecation and prevent the recurrence of fecal impaction. This component of treatment may last many months to years and requires ongoing close follow-up evaluation. Having families use a bowel symptom tracking form or calendar to monitor the child’s response to treatment may be helpful. Clinicians should emphasize the need for close monitoring and long-term treatment with parents because nonadherence to prescribed medications or discontinuing medications too early can result in the development of hard stools and relapses of withholding, leading to fecal impaction. The most common medication used for maintenance therapy is PEG 3350 due to its ease of use, titratability, low adverse effect profile, and efficacy.

When full evacuation of the rectum consistently occurs with stooling for 1 to 2 months without any development of hard stools or withholding behaviors, the laxative medication may gradually be reduced. Early recognition of relapse by both parents and clinicians is vital to long-term treatment of functional constipation. Increasing therapy and aggressively treating a relapse can avoid prolongation of the maintenance phase.

TABLE 3. Medical Therapy for Disimpaction

<table>
<thead>
<tr>
<th>Route</th>
<th>Medical Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (preferred)</td>
<td>• Polyethylene glycol solution 1–1.5 g/kg/day x 3–6 consecutive days</td>
</tr>
<tr>
<td></td>
<td>• Magnesium citrate 4 mL/kg/day x 2 consecutive days</td>
</tr>
<tr>
<td>Rectal</td>
<td>• Normal saline enema 10 mL/kg x 3 consecutive days</td>
</tr>
<tr>
<td></td>
<td>• Sodium phosphate enema x 3 consecutive days</td>
</tr>
<tr>
<td></td>
<td>• 2–4 years: one-half contents of a 2.25-oz pediatric enema</td>
</tr>
<tr>
<td></td>
<td>• 5–11 years: 2.25-oz pediatric enema</td>
</tr>
<tr>
<td></td>
<td>• >12 years: 4.5-oz enema</td>
</tr>
<tr>
<td>Nasogastric (requires hospital admission)</td>
<td>• Polyethylene glycol solution 25–40 mL/kg/hr until rectal effluent is clear (24–48 hr)</td>
</tr>
</tbody>
</table>

When full evacuation of the rectum consistently occurs with stooling for 1 to 2 months without any development of hard stools or withholding behaviors, the laxative medication may gradually be reduced. Early recognition of relapse by both parents and clinicians is vital to long-term treatment of functional constipation. Increasing therapy and aggressively treating a relapse can avoid prolongation of the maintenance phase.
Laxatives used for maintenance therapy should be individualized for each patient. Dosing guidelines and recommendations are suggestions for starting therapy (Table 4). In practice, laxative doses should be titrated to achieve at least one soft bowel movement every day. Understanding the mechanism of action of each laxative can aid clinicians in customizing maintenance therapy because combination therapy can be useful and necessary.

Osmotic laxatives increase the osmotic load within the lumen of the intestine, allowing for fluid retention. The retained fluid is incorporated into the stool and distends the colon, promoting peristalsis. Children may experience bloating, but these laxatives are generally safe; the most common adverse effect is diarrhea. Examples of osmotic laxatives include PEG 3350, lactulose, and magnesium products such as magnesium hydroxide and magnesium citrate.

Mineral oil may ease the passage of stool by lubricating the rectum, which can be unpleasant. Palatability of mineral oil is also a challenge for many children. Oral mineral oil is contraindicated in children younger than age 1 year or with known or suspected aspiration.

Dietary modification is frequently considered for treatment, but increasing fluid or fiber intake has unclear efficacy in constipated children. Maintaining adequate hydration is important for a variety of physiologic functions and, in most cases, is a safe recommendation. However, solely increasing fluid intake should not be expected to alter stooling frequency or consistency. Fiber is often chosen as first-line therapy in constipated adults, but recent reviews of evidence cast some doubt on its effectiveness. Dietary fiber intake may be reduced in constipated children compared to those without constipation, but increasing fiber does not clearly improve symptoms and is not recommended as therapy based on current evidence. Fiber also may be tolerated less well than other therapies for constipation in children. Although complications related to fiber therapy are unusual, use of fiber as monotherapy may delay implementation of effective treatment and prolong patient symptoms. Growing evidence supports probiotic and prebiotic use as treatment in adult constipation. These agents may reduce whole-gut transit time, increase stool frequency, and reduce constipation-associated symptoms. However, evidence in pediatrics demonstrates mixed efficacy and their use is associated with additional patient expense, possibly to the exclusion of other effective therapies.

Behavior Modification

The fourth treatment component is behavior modification to improve daily toileting habits and routines. This component should be started at the time of bowel disimpaction or cleanout and continue throughout maintenance treatment.

TABLE 4. Maintenance Therapy for Chronic Constipation

<table>
<thead>
<tr>
<th>Therapy Type</th>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmotic laxatives</td>
<td>Polyethylene glycol 1 g/kg/day</td>
</tr>
<tr>
<td></td>
<td>Lactulose 1–3 mL/kg/day divided into 2 doses</td>
</tr>
<tr>
<td></td>
<td>Magnesium hydroxide</td>
</tr>
<tr>
<td></td>
<td>· <2 years: 0.5 mL/kg/dose</td>
</tr>
<tr>
<td></td>
<td>· 2–5 years: 5–15 mL/day before bedtime or in divided doses</td>
</tr>
<tr>
<td></td>
<td>· 6–11 years: 15–30 mL/day before bedtime or in divided doses</td>
</tr>
<tr>
<td></td>
<td>· ≥12 years: 30–60 mL/day before bedtime or in divided doses</td>
</tr>
<tr>
<td>Stool Softeners/Lubricants</td>
<td>Docusate 5 mg/kg/day (up to 400 mg/day)</td>
</tr>
<tr>
<td></td>
<td>Mineral oil 1–3 mL/kg/day divided into 2 doses</td>
</tr>
<tr>
<td>Stimulant Laxatives (can be used for rescue therapy)</td>
<td>Senna</td>
</tr>
<tr>
<td></td>
<td>· 1 month-2 years: 2.2–4.4 mg/day at bedtime or in 2 divided doses</td>
</tr>
<tr>
<td></td>
<td>· 2–6 years: 4.4–6.6 mg/day at bedtime or in 2 divided doses</td>
</tr>
<tr>
<td></td>
<td>· 6–12 years: 8.8–13.2 mg/day at bedtime or in 2 divided doses</td>
</tr>
<tr>
<td></td>
<td>· >12 years: 17.6–26.4 mg/day at bedtime or in 2 divided doses</td>
</tr>
<tr>
<td></td>
<td>Bisacodyl</td>
</tr>
<tr>
<td></td>
<td>· 3–12 years: 5–10 mg/day</td>
</tr>
<tr>
<td></td>
<td>· >12 years: 5–15 mg/day</td>
</tr>
</tbody>
</table>
Research regarding specific behavioral treatments for encopresis is disjointed and difficult to synthesize based on recent reviews. However, the use of operant procedures (incentive/reward programs and positive reinforcement) for goals related to toileting and cleanliness have empiric support. Incentive/reward systems can be used to target various goals related to successful toileting. The targets of intervention may vary with individual children. Rewarding the patient for cooperation with the components of the treatment regimen and NOT just for proper elimination in the toilet is important. Children must achieve important goals or behavioral skills on the way to successful toileting, such as gaining confidence and compliance with toilet sitting, responding appropriately and honestly to soiling accidents, and learning effective pushing techniques to produce complete and emptying bowel movements.

An important part of the standard medical-behavioral treatment of encopresis is improving toilet sitting behavior. However, stool withholding and toileting refusal behaviors may interfere with progress toward toilet sitting goals and sometimes must be addressed before implementing a toilet sitting plan. Stool withholding and toileting refusal are believed to be related to the history of difficult-to-pass or even painful bowel movements and are often conceptualized as an anxiety or phobia about passing bowel movements, especially into the toilet. The initial focus of stool withholding management should be to ensure soft and easy-to-pass bowel movements so that the child can gain comfort in passing a bowel movement on a daily basis. In early stages of treatment, bowel movements in a pull-up or diaper may need to be reinforced for the child to gain confidence and voluntarily relax the pelvic floor to achieve a bowel movement. Toilet refusal behavior should also be treated with interventions that gradually desensitize children toward toileting. Desensitization to the toilet may include rewarded trips to the bathroom to look at the toilet, stand by the toilet, sit on a closed lid fully clothed, and eventually sit on the toilet with open lid and pants down. Once the child is having bowel movements comfortably in the diaper or a pull-up and able to sit on the toilet without significant anxiety, parents can use a shaping procedure to encourage bowel movements closer to the toilet and eventually into the toilet. Reward systems or incentives are used to encourage children to take a next step toward successful toileting behavior.

Once the child is comfortable and compliant with sitting on the toilet, the overall goal is to improve daily toileting habits and routines. Empiric evidence suggests that operant procedures or reward systems should be an active part of a toilet sitting schedule. Scheduled toilet sits can occur 20 to 30 minutes after meals to take advantage of the gastrocolic reflex. In addition, pairing toilet sitting with meals is easier to build into the family routine and can create a behavioral stimulus condition for bowel movement success. The time on the toilet should be unrushed and positive. It may include special activities that are only available while on the toilet (special books, toys, or handheld electronics). Parents can also be counseled to provide modeling and coaching during toilet sitting, which includes the parents showing the child when they sit on the toilet and that they are pushing to help get bowel movements out in the toilet. Toilet sits should generally last 5 minutes, but some children need to gradually work their way up to longer sits if there is initial resistance. Scheduled, rewarded toilet sits should include small stepstools to assist the children in getting on the toilet and to use as leverage for their feet. We recommend a wider stepstool or potty stool to allow the child to spread out the feet and knees for better posture to allow successful defecation and for them to feel more comfortable and balanced on the toilet. Once children are having more productive bowel movements in the toilet and soiling has stopped for a 1 month, the number of daily toilet sits can be reduced. Often parents can observe which toilet sits during the day are most productive and begin focusing on those sits. As treatment progresses, children can start to earn incentives/rewards for independently going to the toilet when they feel the urge to have a bowel movement rather than strictly relying on the schedule and parental prompt.

Involving the preschool, kindergarten, or school in scheduled and rewarded toilet sitting is important. Children who are apprehensive about completing toilet sits at school benefit from a more private restroom so that they can take their time and be comfortable with toileting. It also is helpful to allow an “anytime bathroom pass” for children when they start school so that they do not withhold stool when they need to have a bowel movement.

Due to the biopsychosocial nature of functional constipation and fecal incontinence, multidisciplinary or even interdisciplinary care is becoming more common and is highly recommended when available. The combination of medical therapy, behavioral modification, and supportive counseling has the greatest success in the treatment of constipation and encopresis. When multidisciplinary or interdisciplinary care is not readily available, clinicians can still effectively treat this condition with a basic understanding of behavior modification techniques, such as the use of incentives/rewards and gradual setting of goal related to effective toileting.
The overall prognosis for functional constipation has not been completely established. However, a general message for families is that the treatment of constipation and encopresis often requires many months of medication and behavior modification. In addition, relapse of symptoms is very common. According to a recent systematic review, approximately 60% of children with functional constipation are symptom-free between 6 and 12 months after beginning treatment regardless of laxative use, with the remaining 40% of children still experiencing symptoms. (8) In addition, a study in Pediatrics concluded that 25% of children with functional constipation continue to experience symptoms into adulthood. (9) Older school-age children and adolescents who have ongoing constipation and encopresis are even more difficult to treat. All these points highlight the need for aggressive treatment as early as possible as well as close follow-up evaluation and adjustments to the treatment plan. Nonetheless, most children with constipation and encopresis can be managed effectively by the general pediatrician. Indications for referral to a pediatric gastroenterologist include medical red flags, trouble with disimpaction, trouble establishing maintenance therapy, and lack of improvement after 6 months of therapy. Referral to a pediatric behavioral specialist should be considered if significant conditions are interfering with treatment, such as attention-deficit/hyperactivity disorder, oppositional behaviors, anxiety or mood disorders, family conflict or parent-child conflict, or problems with adherence to recommendations.

Summary

The following summary statements are based primarily on consensus and expert opinion due to the lack of relevant clinical studies. A recent comprehensive review of the literature by Tabbers et al, in the Journal of Pediatric Gastroenterology and Nutrition, identified no moderate- or high-quality evidence regarding therapeutic interventions for the evaluation and treatment of functional constipation in infants and children. (8) The presentation of constipation varies, but constipation should be identified according to an appropriate definition, which includes the symptom-based Rome III criteria.

- Constipation is prevalent in children and infrequently a result of underlying intestinal or systemic disease.
- Based on limited evidence as well as consensus, history and physical examination are sufficient to provide a diagnosis of functional constipation; digital rectal examination, laboratory tests, and abdominal radiography are generally not necessary.
- Treatment of constipation requires four components: education, disimpaction, maintenance therapy, and behavioral modification.

References for this article are at http://pedsinreview.aappublications.org/content/36/9/392.full.
Constipation and Your Child

Bowel patterns vary from child to child just as they do in adults. What's normal for your child may be different from what's normal for another child. Most children have bowel movements 1 or 2 times a day. Other children may go 2 to 3 days or longer before passing a normal stool.

If your child doesn't have daily bowel movements, you may worry that she is constipated. But if she is healthy and has normal stools without discomfort or pain, this may be her normal bowel pattern.

Children with constipation have stools that are hard, dry, and difficult or painful to pass. These stools may occur daily or may be less frequent. Although constipation can cause discomfort and pain, it's usually temporary and can be treated.

Constipation is a common problem in children. It's one of the main reasons children are referred to a specialist called a pediatric gastroenterologist. Read more to learn about constipation and its causes, symptoms, and treatments, as well as ways to prevent it.

What causes constipation?

Constipation frequently occurs for a variety of reasons.

- **Diet.** Changes in diet, or not enough fiber or fluid in your child's diet, can cause constipation. (See "Getting enough fiber in your diet.")
- **Illness.** If your child is sick and loses his appetite, a change in his diet can throw off his system and cause him to be constipated. Constipation may be a side effect of some medicines. Constipation may result from certain medical conditions (such as hypothyroidism or low thyroid).
- **Withholding.** Your child may withhold his stool for different reasons. He may withhold to avoid pain from passing a hard stool—it can be even more painful if your child has a bad diaper rash. Or he may be dealing with issues about independence and control—this is common between the ages of 2 and 5 years. Your child also may withhold because he simply doesn't want to take a break from play. Your older child may withhold when he's away from home, at camp or school, because he's embarrassed or uncomfortable using a public toilet.
- **Other changes.** In general, any changes in your child's routine (such as traveling, hot weather, or stressful situations) may affect his overall health and how his bowels function.

If constipation isn't treated, it may get worse. The longer the stool stays inside the lower intestinal track, the larger, firmer, and drier it becomes. Then it becomes more difficult and painful to pass the stool. Your child may hold back his stool because of the pain. This creates a vicious cycle.

What are the symptoms of constipation?

Symptoms of constipation may include the following:

- Many days without normal bowel movements
- Hard stools that are difficult or painful to pass
- Abdominal pain (stomachaches, cramping, nausea)
- Rectal bleeding from tears called fissures

What is encopresis?

If your child withholds her stools, she may produce such large stools that her rectum stretches. She may no longer feel the urge to pass a stool until it is too big to be passed without the help of an enema, laxative, or other treatment. Sometimes only liquid can pass around the stool and leaks out onto your child's underwear. The liquid stool may look like diarrhea, confusing both parent and pediatrician, but it's not. This problem is called encopresis.

- Soiling (See "What is encopresis?")
- Poor appetite
- Cranky behavior

You also may notice your child crossing her legs, making faces, stretching, clenching her buttocks, or twisting her body on the floor. It may look like your child is trying to push the stool out but instead she's really trying to hold it in.

How is constipation treated?

Constipation is treated in different ways. Your pediatrician will recommend a treatment based on your child's age and how serious the problem is. If your child's case is severe, he may need a special medical test, such as an x-ray. In most cases, no tests are needed.

Treatment of babies. Constipation is rarely a problem in younger infants. It may become a problem when your baby starts solid foods. Your pediatrician may suggest adding more water or juice to your child's diet.

Treatment of older children. When a child or teen is constipated, it may be because his diet doesn't include enough high-fiber foods and water. Your pediatrician may suggest adding more high-fiber foods to your child's diet, and encourage him to drink more water. These changes in your child's diet will help get rid of abdominal pain from constipation.

Severe cases. If your child has a severe case of constipation, your pediatrician may prescribe medicine to soften or remove the stool. **Never give your child laxatives or enemas unless your pediatrician says it's OK; laxatives can be dangerous to children if not used properly.** After the stool is removed, your pediatrician may suggest ways you can help your child develop good bowel habits to prevent stools from backing up again.

How can constipation be prevented?

Because each child's bowel patterns are different, become familiar with your child's normal bowel patterns. Make note of the usual size and consistency of her stools. This will help you and your pediatrician determine when constipation occurs and how severe the problem is. If your child doesn't have normal bowel movements every few days, or is uncomfortable when stools are passed, she may need help in developing proper bowel habits.
Getting enough fiber in your diet
The American Academy of Pediatrics recommends that children between the ages of 2 and 19 years eat a daily amount of fiber that equals their age plus 5 grams of fiber. For example, 7 grams of fiber is recommended if your child is 2 years old (2 plus 5 grams).

The following are some high-fiber foods:

<table>
<thead>
<tr>
<th>Food</th>
<th>Grams of Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits</td>
<td></td>
</tr>
<tr>
<td>Apple with skin (medium)</td>
<td>3.5</td>
</tr>
<tr>
<td>Pear with skin</td>
<td>4.6</td>
</tr>
<tr>
<td>Peach with skin</td>
<td>2.1</td>
</tr>
<tr>
<td>Raspberries (1 cup)</td>
<td>5.1</td>
</tr>
<tr>
<td>Vegetables Cooked</td>
<td></td>
</tr>
<tr>
<td>Broccoli (1 stalk)</td>
<td>5.0</td>
</tr>
<tr>
<td>Carrots (1 cup)</td>
<td>4.6</td>
</tr>
<tr>
<td>Cauliflower (1 cup)</td>
<td>2.1</td>
</tr>
<tr>
<td>Beans Cooked</td>
<td></td>
</tr>
<tr>
<td>Kidney beans (½ cup)</td>
<td>7.4</td>
</tr>
<tr>
<td>Lima beans (½ cup)</td>
<td>2.6</td>
</tr>
<tr>
<td>Navy beans (½ cup)</td>
<td>3.1</td>
</tr>
<tr>
<td>Whole Grains Cooked</td>
<td></td>
</tr>
<tr>
<td>Whole-wheat cereal (1 cup flakes)</td>
<td>3.0</td>
</tr>
<tr>
<td>Whole-wheat bread (1 slice)</td>
<td>1.7</td>
</tr>
</tbody>
</table>

You can...
- Encourage your child to drink plenty of water and eat more high-fiber foods.
- Help your child set up a regular toilet routine.
- Encourage your child to be physically active. Exercise along with a balanced diet provides the foundation for a healthy, active life.

Remember
If you are concerned about your child’s bowel movements, talk with your pediatrician. A simple change in diet and exercise may be the answer. If not, your pediatrician can suggest a plan that works best for your child.

The information contained in this publication should not be used as a substitute for the medical care and advice of your pediatrician. There may be variations in treatment that your pediatrician may recommend based on individual facts and circumstances.

From your doctor

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN®

The American Academy of Pediatrics is an organization of 60,000 primary care pediatricians, pediatric medical subspecialists, and pediatric surgical specialists dedicated to the health, safety, and well-being of infants, children, adolescents, and young adults.

American Academy of Pediatrics
Web site—www.aap.org

Copyright © 2005
American Academy of Pediatrics
Instructions:

Write your child's name and the time period in the upper right corner.
Write the day of the week and date in the first column.
When your child has a bowel movement in the toilet place an "X" in the appropriate column
 (ie, during toilet sitting or outside of sitting time).
When your child sits on the toilet, but doesn't have a bowel movement,
 place an "O" in the appropriate column.
When your child takes his or her maintenance laxative, place a checkmark in the "Medication" column.
Write any additional information in the "Comments" column
 (eg, need for rescue medication, episodes of wetting, soiling, or abdominal pain).
Keep this diary and bring it with you to the next appointment.
Constipation Management

I. Cleanout Phase

Give your child the following:

___Miralax: Give ___ capful mixed in 8oz of liquid ___ times/day for ___days.
___Pediatric Fleet Enema: Give ______enema ___times/day for ___days.
___Dulcolax Tablets: Give ___ tablet ___times/day for ___ days.
___Dulcolax Suppository: Insert 1 suppository into rectum ___ for ___days.
___Magnesium Citrate: Drink ___oz ___times/day for ___days.
___FleetsPhosphoSoda: Drink ___oz or ___cc ___times/day followed by 8 oz of water for ___days.

II. Maintenance Phase

After the cleanout phase is complete, give your child the following:

___Miralax: Give ___ capful mixed in 8 oz of liquid ___ times/day.
___Milk of Magnesia: Give ___tablespoons ___teaspoons ___times/day.
___Lactulose: Give ___tablespoons ___teaspoons ___times/day.
___Mineral Oil: Give ___tablespoons ___teaspoons ___times/day.
___Dulcolax Tablets: Give ___ tablet ___times per week

III. Daily Behaviors

1. Make sure your child drinks plenty of water every day
2. Have your child sit on the toilet and try to have a bowel movement for 10 minutes each day approximately 30 minutes after breakfast and dinner. Give your child a foot stool to put his feet on if his feet do not touch the floor. Toilet time is not a punishment and should be a calm pleasant relaxed event. **This is a very important part of your child’s care!**
3 Increase your child's intake of fresh fruits and vegetables.
4. Turn off the TV & computer, and have your child participate in some form of exercise for at least 30 minutes a day.

Constipation takes a long time to develop—and can take many months to correct. Please be patient with your child!

WRNMMC Pediatric Gastroenterology
Constipation Quiz

1. **Define Constipation:**
 A) Failure to evacuate the lower colon completely.
 B) A delay or difficulty in defecation for ≥2 weeks
 C) Type 1 & 2 on the Bristol Stool Chart
 D) <2 stools/wk & h/o of large diameter stools
 E) All of the Above

 Rome III Criteria: That at least two of the following in >4yo
 -Two or fewer defecations per week
 -At least one episode/week of incontinence after potty-trained
 -History of excessive stool retention
 -History of painful or hard bowel movements
 -Large fecal mass in the rectum
 -Large diameter stools which may obstruct the toilet
 Sxs may include irritability, decreased appetite, and/or early satiety, which disappear following passage of a large stool.

2. Please complete the following laxative classification table:

<table>
<thead>
<tr>
<th>Bulk-producers</th>
<th>Stool softeners</th>
<th>Lubricants</th>
<th>Osmotics</th>
<th>Stimulants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Cause the stool to be bulkier and more retain water</td>
<td>Enable additional water & fats to be added to the stool</td>
<td>Makes the stool more slippery and easy to pass</td>
<td>Attracts water, softening the stool</td>
</tr>
<tr>
<td>Examples</td>
<td>Dietary Fiber Metamucil</td>
<td>Docusate (Colace)</td>
<td>Mineral Oil</td>
<td>Sodium phos, mag citrate, milk of magnesia; PEG (Miralax), lactulose, glycerin supp</td>
</tr>
</tbody>
</table>

3. What is the goal of maintenance therapy? How long should it be continued?
1-2 soft stools per day. Therapy may be required for months to years (duration of treatment roughly correlates with duration of chronic constipation). At a minimum, no weaning should take place until child is free of constipation symptoms for 1-2 months.
Constipation Cases

Case 1: Dee is a 6 year old male who presents with fecal soiling on a daily basis, which began in late October. He claims he "can't tell when" he is about to soil. His parents Mr. and Ms. Stewart report multiple bouts daily of fecal urgency where he rushes to the toilet, only to pass small amounts of diarrheal stool. His toilet sitting behavior is peculiar in that he sits far back on the toilet seat with his knees extended and his toes pointed, straining at defecation. Once or twice weekly he will pass a very large caliber formed stool, which has on occasion plugged the plumbing. This pattern was not thought to be a problem by his parents as it began shortly after they began potty training him at two years old so that he could enter preschool earlier than rest of the neighborhood kids. **What additional history would you like to know?**

- **Dietary history:** How much dairy? How much fiber? How much fluid?
- **Birth Hx:** Meconium stool within 1st 24 hrs
- **ROS for organic disorders:** See Table 1 (Hirschsprung, spinal cord disorder, hypothyroidism, diabetes insipidus, CF, gluten enteropathy, congenital anomaly)
- **Toilet training/Toileting behavior:** See Behavior II for discussion of stool withholding.

The dietary history finds that he eats the school breakfast and lunch, and will often not touch his vegetables at supper. Closer questioning indicates Dee does not pick fruit or vegetables from the salad bar at school, and the school typically offers only sweet buns or a burrito for breakfast. Physical examination finds a midline mass in the lower abdomen, with a rectal examination that shows a normally placed anus with an intact anal wink and a perineum coated with stool. The anus is shortened with the internal anal sphincter dilated by a massive amount of formed stool. You are unable to accurately assess the diameter of the rectum as the stool appears to fill the pelvic bowl. The stool tests negative for occult blood.

What diagnosis does this history/physical suggest?
Chronic constipation, with overflow incontinence/ encopresis (reported by 55% boys with constipation; 35% of girls)

What is the pathogenesis of this diagnosis? Graphic from IFFGD, 2006.

A. The rectum is empty. There is no urge to defecate.

B. Stool enters the rectum and stretches the rectal wall, causing a sensation of fullness.

C. Rectal wall distension causes relaxation of the internal anal sphincter, allowing the stool to descend into the proximal anal canal. This causes awareness that stool passage is imminent.
F / G. Defecation occurs when the pelvic floor relaxes, and the pressure in the rectum is greater than the pressure from the external anal sphincter and the pelvic floor.

D. The pelvic floor muscles contract to maintain continence, moving stool up and out.

E. If the stool remains in the rectum after the pelvic floor returns to its resting state, then stool will no longer be in contact with the anus. The rectal wall relaxes; reducing the pressure and wall tension, and the urge to defecate abates.

H. Over wks-mos, the rectal wall stretches to accommodate the retained fecal mass and the propulsive power of the rectum is diminished. The longer feces remain in the rectum, the harder it becomes. Passage of a hard or large stool may cause a painful anal fissure. The cycle of avoiding BM because of a fear of painful defecation may progress to further stool retention.

What are the key features of behavioral management for this patient?

If the child is toilet trained, they should be encouraged to sit on the toilet, and try to have a BM, for five minutes, 15-30min after a meal or snack. Try to do at least twice a day. Listening to music may make this less boring, but the child should concentrate on pushing with the belly muscle and relaxing the buttocks. A large hot drink or after bathing may also help.

The child must be comfortable. Place a box or stool under the feet of smaller children to raise their knees higher than their hips. Very small children may feel safer if they face backwards on the toilet (“hugging the bowl”) or use a potty chair. Increase physical activity, as exercise helps move stool down the colon.

In older children, it is important to encourage them to take responsibility for his or her actions. The child should be responsible for taking the medicine without a fight, for sitting on the toilet, and for cleaning up stool accidents. Having a calendar to mark down doses and “sits” can help keep track (see Stool Diary). Children respond well to a carefully planned, consistent system of rewards for appropriate behavior (see Behavior I).

Occasionally, a counselor may be helpful to reduce the tension that children and families feel because of constipation and soiling, especially when the child’s condition becomes a “family problem”. It is important to try to avoid anger or punishment around accidents. Most often, the child is not being defiant; he or she simply cannot feel the stool coming out.

How would you disimpact this patient?

Various options presented in Table 3 and in Constipation Management Parent Handout. A commonly used protocol here is 1 capful Miralax + 8oz of water. Repeat BID-TID for 3-4 days. If PO-only is ineffective, providers will often add clean-out “from below” (i.e. enemas).

What maintenance therapy would you provide?

Various options presented in Table 4 and in Constipation Management Parent Handout. A commonly used protocol here is ½-1 capful Miralax + 8oz of water. Titrate to achieve 1-2 soft mushy stools per day (think: peanut butter or toothpaste). The goal of maintenance is to prevent stool buildup, allow the colon to return to its proper shape and function, and to encourage the child to have controlled bowel movements in the toilet.

What dietary recommendations would you make for this patient and family?

- Increase dietary fiber (e.g. fruits, vegetables, bran, whole grains)
- Increase fluid intake
- Decrease dairy intake (≤16-20 oz/day total) . . . Consider possible milk intolerance.
- Decrease “constipating foods” (e.g. rice, bananas, potatoes, corn, cooked carrots)
Case 2: Ms. Queen calls you about Louise. She is a one month old female, and Ms. Queen is concerned because she hasn’t stooled in 3 days. Previously, she had stooled four to five times a day. She was a term delivery with no issues and stooled within the first 48 hours of life.

What other history questions would be important at this time?
- **Birth Hx:** Term? PNC? Meconium stool within 1st 24 hrs?
- **Feeding Hx:** Breastfed or formula-fed. If breastfed, lactation issues (milk supply, milk transfer). UOP (as a sign of dehydration)
- **ROS for organic disorders:** See Table 1

Louise is exclusively breastfed, she is urinating well, continues to eat well and seems happy and playful. Her weight was over birthweight at her 2 week well child and there were no concerns during that visit. Her abdomen seems a little fuller to Ms. Queen, but Louise does not seem bothered.

Are you concerned?
No. This can be a normal stooling pattern in a breastfed baby. See Case 1-Telephone Triage.

What is your advice for this mom? Should she be seen immediately? Tomorrow?
Recall the Barton-Schmitt Telephone Triage Protocols. This is a non-urgent/routine issue, which can be managed with home care or at the 2mo visit UNLESS the parent is still concerned.

Louise is now 5 months old. Ms. Queen brings her in for a visit because every time she tries to start solid foods, Louise goes from stooling every 3-4 days (which has been her norm) to “never”. Ms. Queen reports the first time she tried solids (about 3 weeks ago) Louise went 7 days without stooling and was very uncomfortable and fussy. Ms. Queen finally gave her a glycerin suppository and stopped the solids for a little bit. A week or so later, she tried again with similar results. This time she had gotten some advice to try some clear juice, so she tried pear juice for 2 days with no success. Again, she had to give a suppository on the 7th day which produced a fairly explosive stool. She is growing well and is otherwise developmentally normal.

Are you concerned? Is there other history you would like to obtain?
Yes. Concern for some sort of distal obstruction (i.e. Hirschsprung’s disease or congenital anorectal malformations—including anal stenosis). Review warning s/s of Hirschsprung’s: passage of meconium >48hrs after delivery (when stooled—what did it actually look like?), small-caliber stools, FTT, bloody diarrhea, bilious emesis, abdominal distension.

What would be important on exam? What findings might increase your concern?
Important to do rectal exam and neuro exam (for spinal cord abnormalities). Concerning findings include distended abdomen, tight anal sphincter, empty rectum with palpable abdominal fecal mass, explosive stool when rectal exam is completed.

Faculty Note: This case was based on a patient of Dr. Kimball-Eayrs who ended up having anal stenosis, diagnosed at 5-months.
1. A 16-year-old girl presents with a complaint of constipation. She passes two to three small, pellet-like stools per week and claims that she has not experienced a "normal bowel movement" in 2 months. She usually skips breakfast and buys lunch at school. Both parents are employed, but the family tries to eat dinner together, usually at 8 pm during the week. Physical examination demonstrates a well-developed, well-nourished adolescent who has no unusual findings. Rectal examination reveals normal anal sphincter tone and an empty rectal vault.

Of the following, the MOST appropriate treatment of this patient’s constipation includes

A. lactulose
B. methylcellulose
C. milk of magnesia
D. mineral oil
E. polyethylene glycol

The adolescent described in the vignette has erratic eating habits and presents with the recent onset of a small-volume, infrequent stooling pattern. Physical examination reveals no obvious abnormalities, and rectal examination demonstrates normal anal sphincter tone and a rectal vault devoid of feces. This young woman is exhibiting nonretentive (nonwithholding) constipation that should be treated with a diet that includes increased fluid intake and a commercially available fiber supplement such as methylcellulose.

The dietary history and absence of feces in the rectal vault reported for the girl in the vignette suggest that a more conservative approach that does not encompass medications may be attempted initially. Recent evidence indicates that fiber supplements for constipation management are an important addition to the therapeutic armamentarium, particularly for those in whom dietary history suggests poor fiber intake. Multiple fiber supplements are available over the counter, and two of the most frequently used are psyllium and methylcellulose. No available evidence suggests superiority of one formulation over another; patients should be encouraged to use whichever product is the most palatable to them, thus assuring the greatest likelihood of compliance. Depending on the patient’s response to this non-pharmacologic approach, therapy using an osmotic agent may be added after an adequate trial of the fiber supplement.

Constipation comprises nearly 5% of all primary care pediatric and nearly 25% of all pediatric gastroenterology visits in the United States. Although many factors, including physiologic, anatomic, and psychological disorders may be involved, most affected children exhibit no identifiable pathologic condition, and the term "functional constipation" is applied to their condition. In the young child, constipation most commonly is the consequence of hard, painful bowel movements that lead to voluntary stool withholding. Stress, dietary changes, toilet training, and being "too busy" to use the bathroom are among the many precipitating factors.

Prolonged withholding results in fecal stasis and fluid reabsorption in the colon, with an increase in stool size and consistency. Physical findings often include mild abdominal distention and a palpable stool mass in the left lower quadrant. Rectal examination typically demonstrates a rectal vault filled with firm stool, often extending to the anal verge.

A careful history and physical examination should direct the clinician to prescribing an appropriate course of therapy. For children who have stool withholding (with or without encopresis), behavior modification may be beneficial as an adjunct to medical therapy, particularly for the patient older than 5 years of age. However, treatment should include some form of pharmacologic intervention.
Oral medications used in the treatment of constipation fall into three defined categories: osmotic agents, lubricants, and stimulants. Each drug class possesses a different mechanism of action. In general, stimulants (eg, senna, bisacodyl), which promote enhanced colonic transit, should be avoided as long-term therapy, although they may have some efficacy during an initial "clean-out" period. Lubricants such as mineral oil have long been used as stool-softening agents and to reduce withholding while promoting rectal evacuation. Although mineral oil-containing laxatives theoretically may interfere with vitamin absorption, no available evidence supports this assertion.

Currently, the most frequently used medications for treatment of functional constipation are the osmotic agents, including lactulose (a synthetic disaccharide), sorbitol, and polyethylene glycol (PEG 3350). These agents increase intestinal intraluminal osmolality, thereby inducing water movement. A softer, larger volume of stool is produced, with gradual dissolution of hard fecal matter. These medications are well tolerated long-term, and their doses may be titrated to achieve maximal effectiveness. Recent evidence indicates that PEG 3350 has greater palatability and acceptance over all age ranges, and preliminary clinical data suggest that polyethylene glycol is safe and effective in infants. However, recommendations regarding its use in children younger than 1 year of age must await further clinical trials. Magnesium hydroxide also acts as an osmotic agent, but abdominal cramping and the risk of overdosing, leading to hypermagnesemia, hypophosphatemia, and hypocalcemia, make this a less desirable alternative for long-term use.

2. You are evaluating a 2-day-old term infant because of abdominal distention. He fed normally the first day after birth, but has had progressively increasing vomiting, which now is bilious. Physical examination demonstrates upslanted palpebral fissures, a prominent tongue, and mild hypotonia. Upon passage of a nasogastric tube, you aspirate 80 mL of green-yellow material from his stomach. Abdominal radiographs, including a left lateral decubitus film, reveal dilated loops of bowel and air-fluid levels but no evidence of pneumatosis.

Of the following, the condition that BEST explains this baby’s clinical findings is

A. duodenal atresia
B. Hirschsprung disease
C. meconium ileus
D. necrotizing enterocolitis
E. neonatal intussusception

The infant described in the vignette has clinical features of Down syndrome. Infants who have Down syndrome are at risk for a number of gastrointestinal malformations, most notably duodenal atresia and Hirschsprung disease. The air in the distal small bowel apparent in the radiograph obtained for the infant in the vignette excludes duodenal atresia and annular pancreas. The lack of pneumatosis on the radiograph for this term infant makes necrotizing enterocolitis unlikely. Neonatal intussusception is extremely rare, and meconium ileus is associated with cystic fibrosis, not Down syndrome.

Hirschsprung disease is characterized by congenital absence of a portion of the enteric nervous system (aganglionic). The aganglionic segment of bowel typically begins at the anal verge and extends proximally. Disease limited to the rectosigmoid colon ("short segment" Hirschsprung) accounts for 80% to 90% of cases. The remainder of cases can involve a larger portion of the distal colon ("long segment Hirschsprung"), the entire colon ("total colonic Hirschsprung"), or the colon and small bowel. The aganglionic segment of bowel is unable to contract, leading to either severe constipation or a functional bowel obstruction. It can be difficult to distinguish between functional constipation and Hirschsprung disease in childhood. In general, patients who have Hirschsprung disease have a history of delayed passage of meconium; 95% of affected infants fail to pass meconium in the first day after birth. Stools of
Infants and toddlers who have Hirschsprung disease often are very thin. Because of the hypertensive anal sphincter and aperistaltic distal colon, affected children almost never have encopresis. On rectal examination, an infant or child who has short segment Hirschsprung may have an "explosion of stool" after the examiner's finger is removed.

If Hirschsprung disease is suspected strongly, the patient should undergo further diagnostic testing. Anorectal manometry demonstrates a hypertensive anal sphincter that fails to relax. Barium enema may demonstrate a narrowed rectosigmoid (aganglionic segment) and a dilated proximal colon, with a "transition zone" (area of caliber change between the normal and aganglionic segment). The definitive test for Hirschsprung disease is rectal biopsy, which demonstrates absent ganglion cells in the submucosa and muscularis propria of the rectum. If Hirschsprung disease is identified, surgical resection of the aganglionic colon and anastomosis of the normal colon to the anorectal canal is the treatment of choice.

3. A 5-year-old child presents to your office with a history of recurrent rectal prolapse that occurs at the time of bowel movements. Both the mother and child are very concerned when the rectal tissue protrudes from the anus, but the prolapse typically resolves without treatment.

Of the following, the MOST common cause of rectal prolapse in children is
A. celiac disease
B. cystic fibrosis
C. *Enterobius vermicularis* infestation (pinworms)
D. functional constipation
E. rectal polyps

Rectal prolapse is the herniation of rectal tissue out of the anus. Prolapse typically occurs during defecation and often resolves spontaneously when a child relaxes after defecation. Nevertheless, prolapse usually is of major concern to a parent and child, and ongoing prolapsed may be associated with rectal bleeding from tissue ulceration. The most common cause of rectal prolapse is chronic functional constipation, which accounts for 30% of cases. Other less common causes include rectal polyps, repaired anorectal malformations, constipation due to myelomeningocele, and cystic fibrosis. Although cystic fibrosis probably accounts for fewer than 10% of patients who have recurrent rectal prolapse, it still is recommended that any child who has recurrent rectal prolapse undergo a sweat test to exclude this condition. Temporary rectal prolapse also may be seen in children who have acute diarrheal disease, but should resolve after the illness. Celiac disease and pinworm infection are uncommon causes of rectal prolapse.

Up to 20% of patients who have recurrent prolapse do not have an identifiable cause. Treatment of rectal prolapse typically involves treating constipation with a combination of a lubricant (eg, mineral oil, polyethylene glycol) and a gentle stimulant (eg, senna). If there is significant rectal bleeding, colonoscopy should be considered to exclude lead points or ulcers.

Patients who have persistent rectal prolapse despite medical therapy should be referred to a pediatric surgeon. Initial surgical therapy consists of sclerotherapy (injection of hypertonic saline or D50W into the rectal wall). For patients whose rectal prolapse persists despite sclerotherapy, rectopexy or anorectoplasty can be attempted. The prognosis is usually excellent.

4. A 3-year-old child presents with a history of intermittent painless rectal bleeding. Approximately once or twice a week, she passes a formed stool that contains up to “a teaspoon” of blood. Physical examination demonstrates no fissures or hemorrhoids. Hematocrit measurement and results of coagulation studies are normal. The bleeding persists despite stool softeners.
Of the following, the test that is MOST likely to establish a diagnosis is

A. colonoscopy
B. computed tomography scan of the abdomen
C. Meckel scan (radionuclide technetium scan)
D. magnetic resonance angiography
E. stool culture

The patient described in the vignette has small-volume, painless rectal bleeding that persists despite stool softeners. There is no fever or signs of systemic illness to suggest an infection. The clinical presentation is more consistent with a **colonic polyp** than with infection or Meckel diverticulum. Of the choices offered, colonoscopy is most likely to identify the polyp. A radionuclide scan can help identify a Meckel diverticulum, but usually Meckel diverticulum presents with large-volume rectal bleeding. The absence of fever or cramping argues against *Salmonella* infection, which would require stool culture for diagnosis. Abdominal computed tomography scan and magnetic resonance angiography sometimes are useful in identifying bleeding gastrointestinal lesions, but they are not indicated until a polyp has been ruled out.

Rectal bleeding in a child can either be visible or occult (not seen, but detected by stool guaiac testing). Occult blood may occur or may result from causes anywhere in the gastrointestinal tract, including the esophagus (esophagitis), stomach (gastritis), small intestine, or colon. In contrast, visible maroon or bright red blood usually arises from the distal small bowel or colon.

Conditions causing lower gastrointestinal bleeding can be divided into two basic categories: those that cause bleeding in association with pain and those that result in painless rectal bleeding. Although **constipation probably is the most common cause of rectal bleeding**, patients who have constipation typically produce hard stools with small amounts of blood (less than 1 mL) on the surface of the stool. Hemorrhoidal bleeding usually results in blood on the toilet paper, but not on the stool. In contrast, patients who have colonic inflammation (colitis) generally have significant abdominal pain, especially around the time of defecation. The most common causes of colitis are infectious organisms (including enteric bacterial pathogens, *Clostridium difficile*, and amebae), inflammatory bowel disease, and Henoch-Schönlein purpura. In the infant, necrotizing enterocolitis, Hirschsprung disease, and allergic colitis can cause colonic inflammation.

Painless rectal bleeding generally is caused by anatomic rather than inflammatory lesions. Meckel diverticulum is an extra piece of intestine, typically located in the distal ileum, which can ulcerate and cause large-volume painless rectal bleeding. In toddlers, excessive numbers of lymph nodes in the colon (lymphoid nodular hyperplasia) sometimes may present with rectal bleeding. Colonic polyps may be either single or multiple and can be removed at colonoscopy. If more than one polyp is identified at the time of colonoscopy or if the histology is not typical for a juvenile polyp, the patient may need further evaluation for a hereditary polyposis syndrome.