NCC Pediatrics Continuity Clinic Curriculum: Diabetes
Faculty Guide

**Goals & Objectives:** To learn outpatient and sick-day management for Type I Diabetes:
- Initiate and adjust insulin therapy.
- Integrate diabetes health maintenance into routine follow-up.
- Discuss the principles and recommendations for sick day management of diabetic patients.
- Identify potential complications of Type 1 DM and modifiable factors for prevention.

**Pre-Meeting Preparation:**
*Please read the following enclosures:*
- “Type I Diabetes Mellitus” (*PIR, 2013*)
- “Sick Day Management”

**Conference Agenda:**
- Complete Diabetes Mini-Cases
- **Hands-on Demo:** Explore Diabetes supplies with Endocrine Staff.

**Post-Conference:** Board Review Q&A

**Extra-Credit:**
- [JDRF Website](#)—parent/patient advocacy & education resource
- [American Diabetes Association 2018 Clinical Practice Recommendations](#) — click on links
- [WR-B DKA Clinical Practice Guideline](#) (2015)

© Feb 2018. Updated by Maj Cortney Bleach, COL Karen Vogt, and Mrs. Traci Carter, CDE.
Practice Gaps

1. All children with type 1 diabetes mellitus (T1DM) should have their blood sugar managed with basal-bolus insulin treatment by either multiple daily injections or an insulin pump.

2. All children with T1DM should have access to a pediatric endocrinologist with a diabetes management team with resources to support patients and families.

3. All children with T1DM should be monitored for symptoms and/or screened for commonly associated conditions such as thyroid and celiac disease.

Objectives  After completing this article, readers should be able to:

1. Recognize the presenting signs and symptoms of type 1 diabetes mellitus (T1DM).

2. Know the key principles of effective diabetes self-management and the diabetes care team’s role in facilitating effective self-management.

3. Know the acute and chronic complications of (T1DM).

4. Identify how different categories of insulin analogues are used in daily insulin regimens.

True, it is a fight, but there is pleasure in the struggle. Victory comes to the courageous; and without courage and common sense, success awaits no one. I look upon the diabetic as charioteer and his chariot as drawn by three steeds named Diet, Insulin, and Exercise. It takes skill to drive one horse, intelligence to manage a team of two, but a man must be a very good teamster who can get all three to pull together.

EP Joslin, 1933

Introduction

Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis characterized by autoimmune destruction of the insulin-producing pancreatic β-cell that progressively leads to insulin deficiency and resultant hyperglycemia. If left untreated, insulin deficiency leads to progressive metabolic derangement, with worsening hyperglycemia, ketoacidosis, starvation, and death. In an effort to restore and maintain euglycemia, treatment attempts to mimic the action of the native β-cell by exogenously replacing insulin and includes frequent monitoring of blood glucose levels.

As the visionary pioneer Dr. Elliott P. Joslin believed, the best possible outcomes of T1DM treatment are realized when a sense of empowerment, rather than victimization, is imparted to both patient and family. Achieving this empowerment through diligence and education enables an individual living with T1DM to attain optimal health and
well-being and constitutes the ultimate goal—and challenge—of the medical team.

The epidemiology and pathophysiology of T1DM are discussed in this article, followed by a practical review of the diagnosis and treatment of this chronic, lifelong condition emphasizing the goal of effective diabetes self-management as leading towards enduring wellness.

**Epidemiology**

The prevalence of T1DM among patients younger than age 20 years in the United States is estimated at 1.54 cases per 1,000 youth. (1) The highest prevalence is seen among non-Hispanic white children, with 2.0 cases per 1,000, which is 50% higher than that of black children (1.34 cases per 1,000) and double that of Hispanic children (1.0 cases per 1,000). (1) Girls and boys are almost equally affected, a fact that distinguishes T1DM from most autoimmune illnesses, which tend to affect females more frequently.

The incidence of T1DM in the US pediatric population is estimated to be 19.0 cases per 100,000 person-years. The highest incidence is in non-Hispanic white children followed by black and Hispanic children (23.8, 14.2, and 13.7 cases per 100,000 person-years, respectively). (2) The peak age of onset in the United States appears to occur in early puberty to midpuberty. In most studies, a seasonal variation in onset has been observed in children, with the highest incidence of T1DM occurring during the winter months and the lowest occurring during the summer months. This finding may result from winter months having higher rates of viral infections, which cause a metabolic stress that exceeds the ability of the residual β-cell mass to produce insulin sufficient to maintain euglycemia. Interestingly, the incidence rate of T1DM appears to be increasing in the United States each year, with a mean annual increase in incidence of 2.3% per year, consistent with a rising trend observed globally of 2.8% per year. (3–5)

**Pathogenesis**

A predisposition for T1DM begins at birth with the inheritance of genetic risk factors. Although most newly diagnosed patients have no family history of T1DM, unaffected children who have a relative with T1DM are at increased risk as compared to the general population. The most strongly associated susceptibility genes for T1DM are located in the major histocompatibility complex region on chromosome 6 and most likely operate by directing immune development and permitting presentation of autoantigens to autoreactive lymphocytes.

A triggering environmental factor probably plays an additional role in evoking clinical disease. This hypothesis is supported by the fact that monozygotic twins are not uniformly concordant for disease progression. Environmental factors such as infection may contribute to autoimmune activation by inciting cross-reactivity against antigens on the β-cell that bear a similar molecular structure or in a non-specific way, such as promoting the production of proinflammatory cytokines that injure islet tissue.

The progression from immune activation to clinically relevant islet cell loss may take many years and is marked early by the presence of serum autoantibodies. Once the β-cell mass is insufficient to maintain euglycemia, clinical symptoms evolve.

**Clinical Presentation**

New-onset T1DM usually presents in one of three ways: with “classic” presenting symptoms, with diabetic ketoacidosis (DKA), or more rarely, as an incidental finding.

**Classic Symptoms**

New-onset T1DM presents in the majority of pediatric patients with the classic symptoms of polyuria and polydipsia (69%) and somewhat less frequently with polyphagia and weight loss (33%). (6) Patients and families usually report the duration of symptoms as lasting 1 to 2 weeks, but sometimes several months. Often, these symptoms become more apparent after an episode of enuresis or with the emergence of nocturia. Patients frequently have vague complaints, such as fatigue, and may note blurred vision.

**Diabetic Ketoacidosis**

In roughly one-quarter of cases, a patient with new-onset T1DM will present with DKA. These children and adolescents tend initially to have the same classic symptoms (polyuria, polydipsia, polyphagia, weight loss), which become more severe. As acidosis develops, these patients frequently lose their appetite and nausea, vomiting, and abdominal pain become the significant symptoms. To compensate for the worsening ketoacidosis, hyperpnea develops (Kussmaul respirations). If unchecked, neurologic status progressively deteriorates as acidosis and hyperosmolality worsen, and the patient progresses from drowsiness to lethargy to obtundation. Risk factors associated with an initial presentation of DKA include younger age, especially children younger than age 2 years, ethnic minority status, and lower socioeconomic and parental education levels.

**Incidental Finding**

A smaller number of children and adolescents are diagnosed as having diabetes despite having none of the classic symptoms of T1DM. These children usually have
impaired glucose tolerance because of \( \beta \)-cell loss, but have not yet had overt symptoms. As home blood glucose monitoring has become more widespread, family members with diabetes may check blood glucose levels in other family members, and hyperglycemia will be detected despite a lack of symptoms. Families with diabetes concerned about risk in their children should be directed to a T1DM TrialNet website where screening and longitudinal observation can be performed (www.diabetes-trialnet.org). In other situations, children will have a seemingly unrelated presenting complaint (e.g., vulvovaginal candidiasis) that leads to the detection of glycosuria and then hyperglycemia caused by T1DM.

**Diagnosis**

The diagnostic criteria for all forms of diabetes mellitus are outlined in Table 1. In most cases, the clinical history is strongly suggestive of new-onset diabetes, and laboratory evaluation confirms the diagnosis. Once diabetes is diagnosed, it is important to determine which type of diabetes the patient has to form an appropriate treatment regimen. During the initial assessment, it is imperative also to determine whether potential associated acute comorbidities, such as DKA and cerebral edema, are present. At a minimum, initial laboratory studies should include a serum glucose level to establish the degree of hyperglycemia, and a low threshold should be maintained in ill-appearing patients for obtaining serum electrolytes and a blood gas for detecting possible electrolyte abnormalities that must be corrected as well as the presence of DKA.

An increasingly frequent diagnostic dilemma is distinguishing between T1DM and type 2 diabetes mellitus (T2DM) as the incidence of obesity and T2DM in the pediatric population rises. Differentiating between the two in the obese patient with new-onset diabetes is complicated by presenting characteristics that often overlap. Several features, however, are useful in making a presumptive diagnosis of T1DM versus T2DM in this situation:

- T2DM occurs after pubertal onset in the majority of cases.
- T2DM is associated commonly with obesity, acanthosis nigricans, and features of the metabolic syndrome such as hypertension and dyslipidemia; these features are less common in T1DM.
- Patients with new-onset T1DM are more likely to present with the classic symptoms of new-onset diabetes.
- The presence of autoantibodies associated with T1DM are more suggestive of, but not exclusive to, T1DM than T2DM, particularly when multiple autoantibodies are elevated.
- Patients with new-onset T2DM are approximately five times more likely to have an affected first-degree family member who has T2DM than are patients with new-onset T1DM to have an affected first-degree family member with T1DM.
- The prevalence of T2DM is substantially higher among Native-American, Hispanic, and African-American ethnicities, compared to non-Hispanic white youth.

Patients with new-onset T1DM and T2DM can present with DKA, and the treatment of DKA will be the same. Those patients who present initially in DKA should be continued on insulin until the diagnosis is clear; some patients with T2DM may be able to transition to oral medications once stabilized.

Other causes for new-onset diabetes warrant consideration. These disorders include genetic defects of \( \beta \)-cell function, diseases of the exocrine pancreas, and drug-induced

**Table 1. Criteria for Diagnosis of Diabetes**

<table>
<thead>
<tr>
<th>Test</th>
<th>Threshold</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c</td>
<td>( \geq 6.5% )</td>
<td>(where the test is performed in a laboratory using a method that is National Glycohemoglobin Standardization Program certified and standardized to the Diabetes Complications and Control Trial assay)*</td>
</tr>
<tr>
<td>Fasting glucose level</td>
<td>( \geq 126 , \text{mg/dL} )</td>
<td>(where fasting is defined as no caloric intake for at least 8 hours)*</td>
</tr>
<tr>
<td>2-hour oral glucose tolerance test reading</td>
<td>( \geq 200 , \text{mg/dL} )</td>
<td>(where performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water or 1.75 g/kg of body weight if weight is (&lt; 18 , \text{kg} ) ) *</td>
</tr>
</tbody>
</table>
| Random plasma glucose level                             | \( \geq 200 \, \text{mg/dL} \) in a patient with classic symptoms of hyperglycemia | Data from American Diabetes Association. Standards of medical care in diabetes—2011. *In the absence of unequivocal hyperglycemia, the result should be confirmed by repeat testing. HbA1c: glycated hemoglobin.

OR

- T2DM occurs after pubertal onset in the majority of cases.
- T2DM is associated commonly with obesity, acanthosis nigricans, and features of the metabolic syndrome such as hypertension and dyslipidemia; these features are less common in T1DM.
- Patients with new-onset T1DM are more likely to present with the classic symptoms of new-onset diabetes.
- The presence of autoantibodies associated with T1DM are more suggestive of, but not exclusive to, T1DM than T2DM, particularly when multiple autoantibodies are elevated.
- Patients with new-onset T2DM are approximately five times more likely to have an affected first-degree family member who has T2DM than are patients with new-onset T1DM to have an affected first-degree family member with T1DM.
- The prevalence of T2DM is substantially higher among Native-American, Hispanic, and African-American ethnicities, compared to non-Hispanic white youth.

Patients with new-onset T1DM and T2DM can present with DKA, and the treatment of DKA will be the same. Those patients who present initially in DKA should be continued on insulin until the diagnosis is clear; some patients with T2DM may be able to transition to oral medications once stabilized.

Other causes for new-onset diabetes warrant consideration. These disorders include genetic defects of \( \beta \)-cell function, diseases of the exocrine pancreas, and drug-induced
effects. Genetic defects in insulin secretion are becoming recognized increasingly. Among these conditions, maturity-onset diabetes of the young (MODY) syndromes are a group of disorders characterized by monogenic defects in β-cell function. These defects limit insulin secretion by the β-cell, which leads to hyperglycemia; but the disease severity tends to be milder. The condition presents before age 25 years, is not associated with elevated autoantibodies, and is transmitted in an autosomal dominant fashion. Diseases that cause damage to the exocrine pancreas can lead to diabetes, most commonly in cystic fibrosis–related diabetes and late in the course of chronic pancreatitis. Additionally, a number of drugs and chemicals are known to induce diabetes, including immunosuppressants such as tacrolimus and cyclosporine, glucocorticoids, and chemotherapeutics such as L-asparaginase.

**Treatment**

Once the diagnosis of T1DM is established, initial care focuses on restoring euglycemia and teaching the patient and family the basic skills required to take care of diabetes at home. Initial management is influenced by whether the patient is acutely ill at presentation (eg, whether DKA is present). The approach to initial care should also be tailored to the developmental stage of the patient. Ideally, every child newly diagnosed as having T1DM should be evaluated by a diabetes team consisting of a pediatric endocrinologist, nurse educator, dietician, social worker, child life specialist, and mental health professional.

At a minimum, during the initial visit with the diabetes team, the family should learn how to check and record blood glucose concentrations using a home blood glucose meter, how to draw up and deliver insulin using a syringe, and how to detect and treat hypoglycemia. Once initial management is completed, care shifts toward ongoing management. The patient and family, with the support of the diabetes team, progressively assume greater ownership of diabetes care, with the support of the diabetes team. Ultimately, optimal diabetes management seeks to strike a balance between restoring blood glucose into the euglycemic range in order to minimize the microvascular and macrovascular complications associated with chronic hyperglycemia while simultaneously minimizing a child’s unique vulnerability to hypoglycemia.

**Initial Insulin Regimen**

Insulin therapy is prescribed to mimic the action of the β-cell by achieving three basic goals:

1. **Facilitate metabolism and storage of consumed food.** During feeding, insulin is needed to facilitate transport of glucose from blood into the cells of insulin-dependent tissues such as muscle, fat, and the liver. In the physiologic state, insulin is secreted almost immediately upon eating. By contrast, insulin therapy in T1DM utilizes subcutaneous delivery of rapid or short-acting insulin with meals and snacks. Usually, the dosage of insulin given is proportional to the amount of carbohydrates being ingested. For example, a patient may take 1 unit of insulin for every 10 grams of carbohydrates being consumed. This insulin-to-carbohydrate (I:C) ratio is titrated frequently during the initial weeks of management, and then routinely during ongoing management. The “Rule of 500” sometimes is used to calculate this initial I:C ratio dose by dividing 500 by the estimated total daily dose (TDD) of insulin (estimation of TDD is discussed below).

2. **Normalize hyperglycemia.** One key to tight glycemic control is to minimize the magnitude and duration of hyperglycemic excursions throughout the day. To accomplish this goal, an additional “correction factor” dose of rapid or short-acting insulin is added to the amount of insulin given to cover carbohydrates at mealtimes. The correction factor dose is proportional to the degree of hyperglycemia. To calculate the initial correction factor dose, many clinicians will utilize the “Rule of 1,800” by dividing 1,800 by the estimated TDD. The number estimates how much 1 unit of insulin should drop the blood glucose concentration. For example, a patient with an estimated total daily dose of 18 units of insulin would be expected to have a 100 mg/dL drop in blood glucose for each unit of insulin delivered. Therefore, if the target blood glucose level is 100 mg/dL, the patient should receive an additional 1 unit for a blood glucose of 200 to 299 mg/dL, 2 units for 300 to 399 mg/dL, 3 units for 400 to 499 mg/dL, and so on as a correction factor dose. As with the I:C ratio dose, the correction factor dose is titrated according to the patient’s blood glucose trends.

3. **Maintain euglycemia during fasting.** Because glucose—increasing counter-regulatory hormones retain their ability to stimulate hepatic glucose production, “basal” insulin is needed to maintain a euglycemic balance between meals. For this reason, one or two daily doses of long-acting insulin are given to maintain a low level of insulin during fasting.

When the initial insulin regimen is being designed, it is helpful to approximate the initial TDD of insulin. Children with long-standing diabetes usually require somewhere
between 0.5 and 1.0 units/kg per day of insulin. Prepubescent children tend to require a lower TDD, and pubertal children usually need a higher TDD. In most cases, half of the TDD is given as long-acting insulin and the other half is given as rapid or short-acting insulin to cover meals. With the guidance of the diabetes care team, these doses are adjusted empirically for each patient based on the patient’s blood glucose log.

It is also important to be mindful of the “honeymoon” phase that follows initial diagnosis and treatment with insulin. During this time, endogenous insulin secretion from remaining β-cells continues, and in many cases, insulin doses must be lowered to prevent hypoglycemia. The honeymoon phase tends to occur more frequently and lasts longer in those patients who are older and have a milder initial presentation. Usually, the insulin dose reaches its nadir at approximately 3 months into therapy and the honeymoon phase ends by 7 months, although this interval is highly variable. This period offers a great opportunity for achieving tight control, and it has been suggested that tight initial control begets improved long-term control.

Insulin analogues are categorized by their time course of action as rapid, short, intermediate, or long-acting, as outlined in Table 2 and shown in Figure 1. These pharmacodynamic characteristics form the basis of the framework for a daily insulin regimen that seeks to mimic the β-cell. Figure 2 illustrates a “basal–bolus,” or “multiple daily injection” regimen, in which rapid-acting insulin is given with meals and snacks and long-acting insulin sometimes are utilized in regimens to minimize the number of daily injections. In a “mixed-split” regimen, a short-acting insulin is mixed in the same syringe with an intermediate analogue, and two daily doses are given—one with breakfast and one with dinner. The short-acting insulin covers breakfast and dinner, while the delayed action of the intermediate-acting insulin is utilized to cover lunch and a bedtime snack. A major advantage of the basal–bolus regimen over the mixed-split regimen is greater flexibility for when meals and snacks can be eaten and how many carbohydrates can be consumed. Good results can be obtained with a mixed-split regimen, but this treatment requires a patient to eat the same amount at the same time each day.

### Diabetic Ketoacidosis

**Initial Assessment and Monitoring**

The biochemical criteria for DKA include a blood glucose level greater than 200 mg/dL and venous pH less than 7.30 or a bicarbonate level less than 15 mmol/L. The severity of DKA can be classified according to the severity of the acidosis, as shown in Table 3. (7,8) Precipitating factors that could lead to the onset of DKA—such as infection, or in the case of patients with known T1DM, insulin omission, insulin pump failure, or failure to match insulin dosing to metabolic requirements during illness—should be investigated. Medication noncompliance is frequently the cause of recurrent DKA. In one study, 85% of hospital admissions for DKA involved discontinuation of medication use. (9) The degree of dehydration should be appraised clinically at presentation and monitored for improvement during treatment. Unfortunately, it is difficult in this setting to estimate dehydration accurately according to the clinical findings more frequently associated with acute dehydration because water losses occur over a longer period of time and are both intracellular and extracellular. The majority of patients who present with DKA are between 5% and 10% dehydrated.

Because all patients who have ketoacidosis do not have DKA, other conditions with similar presentations

<table>
<thead>
<tr>
<th>Insulin analogue</th>
<th>Onset of action</th>
<th>Peak action (h)</th>
<th>Effective duration (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rapid acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lispro (Humalog®, Eli Lilly)</td>
<td>15 min</td>
<td>0.5–1.5</td>
<td>4–6</td>
</tr>
<tr>
<td>Aspart (NovoLog®, Novo-Nordisk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glulisine (Apidra®, Sanofi-Aventis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Short acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>30–60 min</td>
<td>2–3</td>
<td>8–10</td>
</tr>
<tr>
<td><strong>Intermediate acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH</td>
<td>2–4 h</td>
<td>4–10</td>
<td>12–18</td>
</tr>
<tr>
<td><strong>Long acting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliargine (Lantus®, Sanofi-Aventis)</td>
<td>2–4 h</td>
<td>None</td>
<td>20–24</td>
</tr>
<tr>
<td>Detemir (Levemir®, Novo-Nordisk)</td>
<td>2–4 h</td>
<td>3–9</td>
<td>6–24*</td>
</tr>
</tbody>
</table>

*Duration of action is dose dependent.
- Humalog®, Eli Lilly and Company World Headquarters, Lilly Corporate Center, Indianapolis, Indiana 46285.
- NovoLog®, Levemir®, Novo Nordisk, Corporate Headquarters, Novo Allé, 2880 Bagsvaerd, Denmark.
- Apidra®, Lantus®, Sanofi-Aventis, 54 rue La Boétie, 75008 Paris, France.

---

**Table 2. Approximate Pharmacodynamic Characteristics of Insulin Analogues**
should be considered. For instance, starvation ketosis and alcoholic ketoacidosis can present with ketoacidosis and elevated blood glucose concentrations but rarely are associated with a blood glucose greater than 250 mg/dL. DKA also should be distinguished from other causes of increased anion gap metabolic acidosis, including lactic acidosis, ingestions (eg, methanol, ethylene glycol, salicylates), and renal failure.

After the initial assessment, the key elements of early treatment include frequent monitoring of clinical and biochemical parameters, fluid and electrolyte replacement, correction of hyperglycemia and ketoacidosis, and if necessary, treatment of cerebral edema. During the initial phase of treatment, the patient’s heart rate, respiratory rate, blood pressure, neurologic status, capillary glucose level, and fluid output and input status should be assessed hourly. In cases of severe DKA, electrocardiographic monitoring is useful to monitor for evidence of hyperkalemia (eg, peaked T wave, reduced P wave, and widening of QRS complex as severity worsens) or hypokalemia (eg, flattened or inverted T wave, ST segment depression, the presence of a U wave, and a widened PR interval), both of which can lead to cardiac arrhythmia. Checking levels of serum electrolytes, glucose, and blood gases every 2 to 4 hours is needed to assess response to treatment and to guide adjustments in therapy.

Cerebral Edema

Once the diagnosis of DKA is established, the patient should be assessed for comorbidities associated with DKA. Most critically, the medical team should monitor for signs and symptoms of cerebral edema before and during treatment for DKA. Although rare (occurring in 0.5% to 1% of pediatric cases of DKA), (10) cerebral edema has been associated with a mortality rate of 21% to 24% and permanent neurologic impairment in an additional 15% to 32% of cases. (10) In most cases, cerebral edema occurs 4 to 12 hours after the initiation of treatment for DKA (10,11) but can sometimes occur before treatment has been initiated. (8)
Muir and colleagues proposed a bedside, evidenced-based protocol for the early detection of patients at risk for cerebral edema, outlined in Table 4. (11) The authors found that bedside findings of either two major criteria or one major criterion with two minor criteria could identify cerebral edema sufficiently early for intervention. Diagnostic criteria are listed in Table 4 also, but once these signs are present, advanced cerebral edema with the likelihood of significant neurologic injury is also present.

It is important to note that cerebral edema is a clinical, not radiologic, diagnosis because a substantial number of patients with cerebral edema and impending neurologic collapse will have no positive findings on computed tomography of the brain. (11) Thus, imaging studies may be warranted to rule out other causes of neurologic deterioration—although never needed to confirm cerebral edema—but treatment for cerebral edema should not be delayed for confirmatory neuroimaging.

If clinical evidence suggests the presence of cerebral edema, prompt treatment is needed. Early treatment with mannitol (0.25 to 1.0 g/kg) or hypertonic (3%) saline over 30 minutes (5 to 10 mL/kg) may prevent long-term neurologic consequences or death.

### Fluid and Electrolyte Therapy

Once intravenous (IV) access is obtained, water and electrolyte deficits need to be replaced in order to restore the circulating volume and the glomerular filtration rate and improve renal clearance of glucose and ketones from the blood. To replace these deficits, most experts recommend using isotonic saline initially and caution against rehydrating the patient too aggressively, suggesting that rehydrating too rapidly using hypotonic solution for initial volume expansion is associated with increased risk for cerebral edema. (7,8) In general, in children with moderate to severe DKA, initial rehydration with 10 to 20 mL/kg isotonic solution (either 0.9% saline or Ringer lactate) over 1 to 2 hours is recommended.

Following the initial fluid resuscitation, the rate of IV fluid should be calculated to run at a rate designed to rehydrate evenly over the next 48 hours. This goal usually can be achieved by running fluids at a rate of 1.5 to 2 times the calculated maintenance rate. Because large amounts of replacement with 0.9% saline has been associated with hyperchloremic metabolic acidosis, (7,8) the IV fluids can be changed to a solution with 0.45% or greater saline with added potassium after at least 4 to 6 hours of fluid replacement with isotonic solution. As insulin is being replaced, an intracellular shift of potassium that leads to a drop in potassium level is seen. For this reason, frequent monitoring is needed as the potassium is replaced and IV fluids are administered.

### Insulin

As the fluid and electrolyte deficit is corrected, insulin replacement is needed to normalize the elevated blood glucose and suppress ketogenesis and lipolysis. After the initial 1 to 2 hours of fluid rehydration, continuous IV insulin infusion is started at a rate of 0.1 unit/kg per hour. An initial IV insulin bolus is contraindicated and will cause a rapid drop in blood glucose that may precipitate cerebral edema; in addition, IV insulin’s half-life is approximately 7 minutes and therefore cannot suppress ketosis. (7) Ideally, the continuous insulin infusion should lead to a drop in blood glucose at a rate of 50 to 100 mg/dL per hr. In most cases, patients with cerebral edema and impending neurologic deterioration may be warranted to rule out other causes of neurologic injury. Prompt intervention is indicated to prevent long-standing neurologic injury. Signs that occur before treatment should not be considered in the diagnosis of cerebral edema (eg, vomiting before initial treatment should not be counted).

### Table 4. Bedside Evaluation of Neurologic State of Children with Diabetic Ketoacidosis

**Diagnostic Criteria for Cerebral Edema**
- Abnormal motor or verbal response to pain
- Decorticate or decerebrate posture
- Cranial nerve palsy (especially III, IV, and VI)
- Abnormal neurogenic respiratory pattern (eg, grunting, tachypnea, Cheyne-Stokes respirations, apneusis)

**Major Criteria**
- Altered mentation or fluctuating level of consciousness
- Sustained heart rate deceleration
- Age-inappropriate incontinence

**Minor Criteria**
- Vomiting
- Headache
- Lethargy or not being aroused from sleep
- Diastolic pressure >90 mmHg
- Age < 5 years


- The presence of any of the first four diagnostic criteria in the table indicates that advanced cerebral edema is present with the likelihood of significant neurologic injury. Prompt intervention is indicated to limit neurologic injury.
- The presence of two major criteria or one major criterion and two minor criteria represent the presence of early cerebral edema; prompt intervention is indicated to prevent long-standing neurologic injury.
- Signs that occur before treatment should not be considered in the diagnosis of cerebral edema (eg, vomiting before initial treatment should not be counted).
the hyperglycemia normalizes before the correction of ketoacidosis.

In order to continue infusing insulin to clear the ketoacidosis without inducing hypoglycemia, dextrose can be added to the IV fluids. Many protocols will begin using IV fluids containing 5% dextrose when the blood glucose level drops below 300 mg/dL, then 10% dextrose when blood glucose is less than 200 mg/dL. As insulin continues to be infused and the fluid deficit is replaced, ketoacidosis will resolve. (10) No other intervention besides insulin and IV fluids is indicated to treat the acidosis; bicarbonate should not be used because its use has been associated with cerebral edema. The continuous insulin infusion should be maintained until the ketoacidosis has resolved (ie, pH greater than 7.30 or bicarbonate greater than 17 mmol/L) and the patient is well enough to tolerate oral intake. At this point, IV insulin can be transitioned to a subcutaneous insulin regimen, as described for the patient who initially presents without DKA.

**Ongoing Management**

Once the medical problems related to the initial presentation have resolved, care shifts towards ongoing management. T1DM is a chronic condition that requires frequent monitoring of blood glucose, frequent dose calculations of numerous injections of insulin analogues with different pharmacokinetic properties, and continual adjustment for alterations in homeostasis, such as stress. Once diagnosed, the initial adjustments in a patient’s daily regimen required to achieve effective self-management can seem dramatic and overwhelming.

Yet, in spite of this need for adjustment, the individuals who have T1DM have distinguished themselves in diverse fields. Such individuals include a Supreme Court justice, Olympic gold medalists, internationally recognized scientists, and famous musicians and artists. Their success proves that despite the challenges of T1DM self-management, patients can flourish in the pursuit of their ambitions; however, effective ongoing diabetes education and care is essential for realizing these goals.

**Education**

After teaching the essential skills of self-management, education transitions towards an ongoing phase seeking to integrate effective diabetes self-management into a daily routine. The patient and family should learn how to handle common contingencies that will affect self-care, such as exercising, dealing with sick days, and traveling. The care team should help facilitate a gradual shift in responsibility for self-care from the parents to the maturing child.

**Blood Glucose Monitoring**

In order to approach near-normalization of blood glucose concentration, frequent blood glucose monitoring is needed to minimize glycemic excursions and to evaluate the effectiveness of an insulin regimen. More frequent blood glucose monitoring is associated with better glycemic control, and for this reason, four or more tests per day are recommended. (12) Patients and their families should be encouraged to log their blood glucose data, not only to help the diabetes team adjust the insulin regimen but also to gain insight into patterns associated with their own diabetes regimen. The blood glucose log and the glycated hemoglobin (HbA1c) level are useful in quantifying glycemic control and directing titration of insulin doses.

Because glucose becomes irreversibly attached to hemoglobin at a rate proportional to blood glucose concentration, and because the average life span of a red blood cell is roughly 3 months, a measurement of HbA1c correlates well with the average glucose level over the preceding 3 months. In some cases, a fructosamine level is useful because it reflects an average glucose level over a shorter period of 2 to 3 weeks. This test is helpful when patients have a concurrent condition in which hemoglobin turnover is higher, such as hemoglobinopathies or hemolytic anemia, or in situations in which a physician desires an earlier objective assessment of a recent change in therapy.

**Insulin Pump**

The insulin pump has increased in popularity as an insulin delivery tool over the past two decades. The essential components of most insulin pumps consist of the pump itself, a disposable insulin reservoir, and a disposable infusion set (including a cannula and tubing that connects the cannula to the pump and reservoir). In a manner similar to the basal–bolus regimen, continuous subcutaneous insulin infusion via an insulin pump attempts to mimic the action of the pancreatic β-cell by delivering rapid-acting insulin with basal and bolus components.

Most current-generation pumps allow the user to enter in the number of grams of carbohydrates being eaten and the current blood glucose level and then calculate an appropriate bolus dose according to the patient’s I:C ratio and correction factor. The pump can also factor in a mathematical estimate of the amount of active insulin in the circulation at the time of the bolus. Instead of using long-acting insulin analogues, the pump delivers basal insulin by slowly infusing frequent, small aliquots of rapid-acting insulin on a continual basis, effectively giving basal insulin as a continuous infusion.
This approach to basal insulin delivery is a key advantage of the insulin pump over multiple daily injections in that it allows different basal rates at various times of day, which can be used to tailor an insulin regimen to fit variations in insulin sensitivity through a daily cycle. For example, many patients experience an overnight “dawn phenomenon” when circadian rises in growth hormone and cortisol have a glucose-raising effect. To balance this physiologic effect, the overnight insulin basal rate can be titrated up without increasing the daytime basal rate.

Nutrition
Medical nutrition therapy is an important aspect of achieving optimal glucose control. A meal plan should seek to meet the nutritional requirements needed for normal growth and development and fit within the family’s routine of meal and snack times, exercise, and cultural norms. Although the nutritional needs are the same for children who have diabetes as for children who do not, intensive insulin therapy to achieve tight glycemic control relies on an accurate assessment of the total amount of carbohydrates being consumed. For these reasons, a medical nutritionist’s guidance is needed to help establish a meal plan that meets these needs and to teach families how to measure the carbohydrates in meals and snacks accurately.

A common lay misconception of medical nutrition therapy in T1DM is that calories should be restricted or that certain foods are “off-limits.” In general, these principles are influenced by greater familiarity with lifestyle interventions needed in T2DM. Additionally, earlier approaches to insulin therapy relied on fixed doses of mixed insulins and required rigid mealtimes and carbohydrate amounts.

The overall guiding principal for medical nutrition in T1DM today is that the same healthy diet that would be ideal for an individual without diabetes would be ideal for an individual with T1DM. Thus, an appropriate diet seeks to obtain approximately 50% of calories from carbohydrates, 30% from protein, and 20% from fat while limiting saturated fat and cholesterol intake. The medical team should monitor weight gain, keeping in mind that the same factors influencing the rising obesity epidemic also affect patients with T1DM, and that long-term morbidity and mortality associated with obesity can be compounded by the macrovascular and microvascular complications of poorly controlled T1DM. For this reason, any trend toward becoming overweight and obese should be addressed without delay.

Hypoglycemia
Hypoglycemia, biochemically defined as a plasma glucose level of 70 mg/dL or less, is a serious and common drawback to insulin regimens that seek to control blood glucose tightly. On average, hypoglycemia occurs twice weekly in patients intensively treated for T1DM; and severe hypoglycemia, defined as an event in which a patient requires the assistance of another person to administer carbohydrate or glucagon, has an incidence of 1.1 to 1.5 episodes per patient-year. (13,14) Initial symptoms of hypoglycemia include tremor, pallor, weakness, sweating, anxiety, hunger, tachycardia, and transient cognitive impairment. Severe hypoglycemia is associated with significant morbidity and mortality, including cardiac dysrhythmias, seizures, focal neurologic abnormalities, and rarely, permanent neurologic impairment and death.

Diabetes education should teach the patient and family to recognize the symptoms of early hypoglycemia, to check the blood glucose level, and to administer 15 g of rapidly absorbable glucose (eg, glucose tablets) when the blood glucose level is less than 70 mg/dL. The blood glucose should then be rechecked 15 minutes later, with the goal of a glucose level rise to 100 mg/dL or greater. If the glucose level does not rise to 100 mg/dL or greater, another 15 g should be given and the process repeated until the concentration rises to at least 100 mg/dL. Families also should be taught to inject 0.5 to 1.0 mg of glucagon intramuscularly in situations in which the patient has lost consciousness or is otherwise unable to take oral glucose.

Exercise
Exercise positively affects the overall physical, mental, and social health in youth with T1DM. The ability to enjoy physical activity and to develop social skills and confidence through sports participation helps to form a framework for future health as an adult. Exercise presents a challenge to many patients with T1DM, however, because of its propensity to induce hypoglycemia both during and after exercise as glucose utilization and insulin sensitivity increase.

For this reason, patients should be counseled to check blood glucose levels before, during, and after exercise. Before the start of exercise, blood glucose levels should be greater than 100 to 120 mg/dL to decrease the likelihood of exercise-induced hypoglycemia, although, as with all aspects of diabetes, this target should be adjusted empirically based on self-monitoring. During exercise, the glucose level should be checked each hour to target a stable glucose concentration. Families should be counseled that the hypoglycemic effect of exercise can be delayed (eg, occurring overnight after daytime exercise), a process thought to be related to repletion of muscle glycogen stores.
Rather than increasing glucose consumption prior to exercise to prevent hypoglycemia, a preferable approach is to decrease the insulin doses that could affect glycemic levels during exercise. This approach requires consideration of several variables, such as the intensity and duration of exercise as well as the amount of insulin on board. These factors tend to make planning for exercise a process of trial and error.

**Sick Day Management**

Because the body’s stress response to acute illness tends to trigger stress hormones that increase glucose, children with T1DM who experience acute illness should be monitored closely by checking blood glucose and urine ketone concentrations to prevent progression into worsening dehydration and DKA. Although many algorithms for home treatment during illness have been derived, the basic tenants of “sick day” management are that blood glucose and urine ketones should be checked frequently (eg, every 3-4 hours), that insulin should not be withheld even when oral intake is limited, and that supplemental doses of rapid-acting insulin should be given to correct hyperglycemia and suppress ketogenesis (eg, every 3-4 hours). Also, dehydration and subsequent acceleration towards DKA should be prevented by frequent, small sips of fluids.

By carrying out the steps of diabetes sick day management early in the course of an illness, patients who often are in mild to moderate DKA can reverse and resolve acidosis. One algorithm of diabetes sick day rules is presented in Table 5. Patients using insulin pumps should deliver the first dose of rapid-acting insulin with a syringe subcutaneously instead of using the pump to ensure that the insulin is delivered. In most cases, the pump’s infusion set should be replaced with a new infusion set to ensure insulin delivery is not being hindered by a “crimp,” injection site lipohypertrophy, or other abnormality with the pump or infusion site. Families should be instructed about factors that indicate worsening DKA or impending cerebral edema, such as those listed in Table 4, that would warrant prompt evaluation by a medical team. A postcard with diabetes sick day management steps for patients can be found at http://www.childrenshospital.vanderbilt.org/uploads/documents/vdc_flu_postcard.pdf.

**Psychosocial Issues**

The diagnosis of T1DM presents a significant stressor to the patient and family as they deal with making significant adjustments to their daily lives to manage the condition. During this time of initial adaptation, many children struggle to make this adjustment, and those who do struggle tend to have difficulty with depression in the early years of living with diabetes. Adolescents in particular often will go through periods of anxiety, denial, and rejection of their diagnosis.

Children who have T1DM are, in general, more likely to suffer from psychological disorders, particularly depression and anxiety, than their unaffected peers. Patients who have psychological disorders are much more likely to have poor glycemic control and hospitalizations for DKA than those who do not. Because of the tendency for patients and families to set self-management patterns and habits in the early years of living with diabetes that are difficult to break, early identification of psychiatric illness is important. Family-based behavioral interventions, such as goal setting, self-monitoring, positive reinforcement, behavioral contracts, supportive parental communication, and shared responsibility for diabetes management at an age-appropriate level, have been shown to affect glycemic management positively. It is important to know that the level of both parents’ involvement and acceptance of the condition plays a positive role in optimal glucose control.

**Associated Autoimmune Conditions**

Patients afflicted with T1DM carry an increased risk for the development of other autoimmune conditions. Autoimmune thyroid dysfunction is the most frequently associated autoimmune condition. Autoimmune disorders type 1 diabetes mellitus

---

**Table 5. Diabetes Sick Day Rules Algorithm**

<table>
<thead>
<tr>
<th>Management Steps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check blood glucose level every 3-4 hours until feeling well</td>
<td></td>
</tr>
<tr>
<td>2. Give a correction factor dose with rapid-acting insulin every 3-4 hours based upon the blood glucose check (even if not eating)</td>
<td></td>
</tr>
<tr>
<td>3. Check urine ketone concentrations every 3-4 hours</td>
<td></td>
</tr>
<tr>
<td>4. Encourage fluid intake. Ideally give 1 oz. (30 mL) per year of age per hour in small, frequent sips</td>
<td></td>
</tr>
<tr>
<td>- If glucose level is ≥200 mg/dL, sugar-free fluids should be given</td>
<td></td>
</tr>
<tr>
<td>- If glucose level is &lt; 200 mg/dL, sugar-containing fluids should be included</td>
<td></td>
</tr>
</tbody>
</table>

**Factors warranting medical evaluation**

1. Persistent vomiting (eg vomiting more than twice after starting sick day rules) with moderate to large urine ketone levels (or blood ketone levels greater than 1.5 mmol/L)
2. Inappropriately rapid breathing
3. Altered mental status
4. Inability to perform sick day rules
acquired autoimmune condition, with a prevalence of approximately 20% in patients with T1DM. (12) The American Diabetes Association (ADA) therefore recommends measuring a thyroid-stimulating hormone (TSH) level after metabolic control has been established to screen for thyroid dysfunction and then every 1 to 2 years despite previously normal TSH levels, and at any time if growth is abnormal or if clinical suspicion exists for thyroid dysfunction.

When both T1DM and thyroid disease are present, the possibility of coexistent adrenal insufficiency should be considered because the constellation of autoimmune adrenalitis, autoimmune thyroiditis, and T1DM is present commonly in autoimmune polyglandular syndrome type 2.

Patients who have T1DM also are at increased risk for celiac disease, with an estimated prevalence of 4.5%, as compared to approximately 1% in the general population. (12) The ADA additionally recommends that soon after diagnosis, patients with T1DM be screened for celiac disease using tissue transglutaminase antibody or endomyosal antibody assays, and subsequently if growth failure or gastrointestinal symptoms occur. (12) Many experts periodically rescreen patients who have negative antibody levels initially. If symptoms are persistent but antibody levels are negative, gastroenterology consultation and endoscopic evaluation should be considered because the sensitivities of these screening antibody tests are modest.

Complications

Long-term complications from T1DM result from the toxic effect of chronic hyperglycemia and manifest as both microvascular disease (nephropathy, retinopathy, neuropathy) and macrovascular disease (coronary artery disease, peripheral vascular disease, stroke). The importance of tight glycemic control to mitigate these effects has been confirmed in large prospective studies. (15,16) Although clinical evidence of these vascular complications usually does not become apparent until the adult years, the underlying pathophysiologic process begins near the time of diagnosis. Additionally, modifiable or treatable risk factors that compound the risk for these comorbidities, such as smoking, hypertension, and hyperlipidemia, become apparent during the adolescent years. For these reasons, the pediatric years present a key opportunity for early detection of these processes and for interventions that would prevent or minimize future morbidity.

- NEPHROPATHY. The earliest evidence of diabetic nephropathy is microalbuminuria (defined as an albumin-to-creatinine ratio of 30 to 299 mg/g in a spot urine sample).

- RETINOPATHY. Poor glycemic control is associated with substantially increased risk for diabetic retinopathy, a process that begins frequently during the pediatric years; improving glycemic control can minimize the progression of retinopathy. Because retinopathy usually is not recognized earlier than 5 to 10 years after diagnosis and after pubertal onset, the ADA recommends that the first ophthalmologic examination should be obtained after the child is age 10 years and has had T1DM for 3 to 5 years, and routinely thereafter. (12)

- NEUROPATHY. Clinically evident diabetic neuropathy is rare in children and adolescents; but as with the other microvascular complications of T1DM, increased risk is associated with poor glycemic control and disease duration. The ADA recommends annual foot examinations beginning at puberty. (12)

- MACROVASCULAR COMPLICATIONS. Atherosclerotic disease is a major complication of poorly controlled T1DM. Although macrovascular complications rarely become apparent before adulthood, studies evaluating carotid intima media thickness, a sensitive marker for coronary and cerebral vascular disease, have shown the intima to have greater thickness in children, adolescents, and young adults who have T1DM than in their age-matched counterparts. Studies evaluating intensive insulin therapy have demonstrated a significant benefit over standard therapy for reducing the risk of excessive carotid intima media thickness, nonfatal myocardial infarction, stroke, and death from cardiovascular disease. These studies also suggested that long-lasting and fundamental vascular changes occur early in the course of suboptimally controlled T1DM, further emphasizing the importance of tight glycemic control in the pediatric years. (17)

Progress

Despite the disease’s challenges, patients with T1DM—once a uniformly fatal condition—can lead lives marked by wellness and achievement through the diligence of effective self-management with assistance from members of a diabetes care team. Emerging research continues to broaden our understanding of the pathogenesis of
T1DM and guide future treatment modalities to improve blood glucose control, lower the rate of diabetes-related complications, and reduce the daily burden of living with T1DM. Immunomodulating therapies, novel insulin analogues, and the artificial pancreas are areas of research that seek to prevent, treat, and cure this condition. As emerging research continues to advance treatment of diabetes, the principles of effective self-management championed by Dr. Joslin will continue to form the foundation for living successfully with T1DM.

Summary

- Type 1 diabetes mellitus (T1DM) is a chronic, lifelong disorder of glucose homeostasis characterized by autoimmune destruction of the insulin-producing pancreatic β-cell, leading progressively to insulin deficiency and resultant hyperglycemia.
- New-onset T1DM can present with the classic findings of polyuria, polyphagia, and weight loss; as diabetic ketoacidosis (DKA), with vomiting, abdominal pain, and lethargy in addition to the classic symptoms; or as an incidental finding discovered on urine or blood testing performed for other reasons.
- DKA is a life-threatening acute complication of T1DM that requires close monitoring for comorbidities, especially cerebral edema. Treatment focuses on rehydration and insulin replacement.
- Because T1DM is a chronic illness, the best possible management is achieved when patients and their families attain ownership of their condition as part of a continuing, empowering relationship with their diabetes care team.
- Optimal health and wellness is achieved when blood glucose is controlled tightly. Intensive control significantly decreases the likelihood of developing the microvascular and macrovascular complications of T1DM.

References

Type I Diabetes: Sick Day Management

Overall Goal: Prevent diabetic ketoacidosis (DKA)

DKA is the most common cause of death in children and adolescents with type 1 diabetes. DKA in those with known type 1 diabetes IS preventable. Omission of insulin coupled with significant stressor of infection is most common identifiable precipitating event.

DKA is the result of absolute insulin deficiency coupled with counter-regulatory hormone excess (glucagon, epinephrine, cortisol, growth hormone). Elements of DKA include: hyperglycemia, ketonemia, ketonuria, and metabolic acidosis (BG > 200 mg/dl; pH<7.30 or bicarbonate < 15 mEq/L; ketonemia and ketonuria). Symptoms include polyuria, polydipsia, abdominal pain, nausea/vomiting, mental status changes, and Kussmaul respirations.

When a person with diabetes is ill, elevated levels of counter-regulatory hormones result in insulin resistance. Additional insulin is often required to control blood sugar and suppress ketone formation. Parents may assume their children do not need insulin due to decreased appetite, but THIS IS NEVER TRUE—the actual dose may be less, but SOME insulin is necessary. Often MORE insulin is required.

Sick Day Handout (adapted from the WRNMMC Pediatric Diabetes Education Workbook)

Sickness, even just a cold, will make the blood sugar go UP. If there is not enough insulin, the body will use fat for fuel. This makes KETONES. Too many ketones are very dangerous.

Ways to prepare:
1. Read Understanding Diabetes “Pink Panther” Book for more age specific details and sick day planning.
2. Plan ahead for sick days. Make a sick day tool kit.
3. Keep sick day foods at home separate. Examples of 15 grams carb choices: 1/2 cup Gatorade, 1/4 cup Jell-O, 1/2 cup juice, 1/2 cup ice cream, 1 cup chicken noodle soup, 6 crackers, 1 slice toast

To keep your child safe:
1. Always give the basal insulin – do not withhold Lantus!
2. Check blood glucose every 2-4 hours.
3. Drink at least 1 cup of water per hour (1/2 cup for smaller children). If tired of water, you may give other drinks that are sugar-free/caffeine-free.
4. Test for ketones daily and every time blood glucose is > 300mg/dL.
5. Follow the meal plan as much as possible.
6. CALL ENDOCRINOLOGY IF:
   a. If your child is vomiting and can keep nothing down— CALL US and make plans to go to the NEAREST emergency room.
   b. You need help with insulin doses.
   c. Your child has moderate/large ketones (purple color on bottle OR 1.0 or more on the meter)
   d. Your child looks very ill.
   e. You are not sure what to do.

Reach the On-call Pediatric Endocrine Doctor at 202-713-3321
**Sick Day FAQs**

1. **What medicine should a child with diabetes take on a sick day?**
   - Cold and cough medicines are usually not helpful
   - If a child over 4 years is using a cold medicine, “sugar free” syrups are not required. If having regular doses of cough syrup, consider counting the carbs
   - Acetaminophen or ibuprofen will help with fevers and for comfort. (CGM users are warned not to trust the BG readings when taking acetaminophen)
   - Try nasal saline sprays or washes. Encourage drinking more fluids, rest and lots of love.

2. **How do I know when to call or visit my PCM?**
   - Ask for advice with cold, flu, seasonal allergy, upset stomach, earache, or other symptoms
   - Fever
   - Deciding on types of sick day medications, doses, and when to go back to school

3. **When do I call the Pediatric Endocrine Team for sick days?**
   - Sick days with BG over 300mg/dL and moderate to large ketones
   - Stomach pain. Nausea, vomiting, or diarrhea.
   - Difficulty drinking enough water. See sick day rules on previous page, also.

4. **When do I go to the ER or Call 911?**
   - Difficulty breathing. Fast gasping breaths. Shallow, slow or weak breathing
   - Severe pain
   - Fever over 100.4F in infants or children with immune system conditions
   - Fever over 105F
   - Very sick and not improving
   - Unresponsive (not waking up)

**Guidelines for Insulin Adjustment during Sick Days**

**Basal-Bolus Therapy with multiple daily injections (often glargine + rapid acting insulin):**

1. Correction amount: Calculate corrections according to your ratio; multiply result by 1.5 to provide additional coverage.

2. If moderate to large urine ketones or >1.5 mmol/L blood ketones → CALL!

**Basal-Bolus Therapy with Pump:**

1. Correction amount: Calculate corrections according to your ratio; multiply result by 1.5. Use temporary basal → increase basal rates by 10-20% (units/hour).

2. If positive urine or blood ketones, give a separate injection of short-acting insulin & restart pump.

**Medical Tip: Planning a dental procedure? Scheduling a surgery? Please let the Pediatric Endocrinology team know 2-3 weeks in advance to create a diabetes care plan for the dentist or surgeon. Helpful information:**

```
" Date/Time/Location
" How long is the procedure or surgery?
" How long will your child be fasting (example: nothing to eat after midnight)?
" Will your child have an IV (tube for fluids in the vein)?
" Is it okay to wear a pump or CGM in the room?
```
Diabetes Mini-Cases

Part I: Outpatient Management

Case 1: Noah is a 5 year old boy who presents to your clinic with symptoms of polyuria, polydipsia, malaise and a 5-pound weight loss. Laboratory evaluation reveals a plasma glucose of 325 mg/dL, bicarbonate of 22 mmol/L, and trace ketones on urinalysis. He weighs 25 kg. What do you do now? Calculate his initial insulin doses for basal/bolus therapy.

This patient meets criteria for diabetes (random plasma glucose >200 with classic symptoms of diabetes), but not DKA (does not meet acidosis criteria). Admit for initiation of insulin therapy and diabetes education. Consider IV fluids.

**Basal-Bolus (Lantus® = glargine + Novolog® = aspart):**

- Total daily dose (TDD) = 0.5 units/kg/day x 25 kg = 12.5 units
- Lantus dose = 50% of total daily dose = 12.6 x 0.5 = 6 units
- Carb ratio = \( \frac{450}{TDD} = 450/12.5 = 1:36 \)  \( \Rightarrow \) round up to 1 unit for every 40g carbs
- Correction factor = \( \frac{1800}{TDD} = 1800/12.5 = 1:144 \)  \( \Rightarrow \) round up to 1 unit for every 150 mg/dL above goal BG of 150

Case 2: Noah is now 11 years old and has had diabetes for 6 years. He presents to your clinic for routine follow-up. He takes 13 units of glargine (Lantus) SQ qHS. He also takes aspart (Novolog) and uses an insulin-to-carb ratio of 1:15 and a correction factor of 1:50 to a target of 120. Review of his meter/logbook shows consistently high pre-lunch glucoses in the mid-200s, but frequent afternoon low glucoses in the 50s.

What additional information do you want to know? What insulin adjustments would you make? What sort of anticipatory guidance would you cover regarding hypoglycemia?

**Additional information:**
- Does he eat a mid-morning snack and if so, does he cover it with insulin?
- What is his activity level in the afternoon? Exercise may be precipitating the lows.

**Insulin adjustments:**
- If he is not eating a mid-morning snack, the consistently high pre-lunch glucoses suggest that he needs greater insulin coverage at breakfast. The breakfast insulin-to-carb ratio can be increased (1:12 would be reasonable).
- His consistently low afternoon blood sugars suggest too much insulin at lunch. The lunch insulin-to-carb ratio can be decreased (1:18 would be reasonable). If exercise is precipitating the lows, he can decrease his lunch-time insulin on exercise day and/or eat a snack in the afternoon without covering for insulin.

**Anticipatory guidance:**
• Prevention and management of lows (Rule of 15, importance of carrying snacks)
• Exercise safety (prevention of hypoglycemia, ask about sugary beverages/sports drinks)
• Use caution when completing school forms (DMMP, CYS). Needs to carry glucagon in case of emergencies.

Case 3: Noah presents to your clinic for a routine health supervision visit, now at age 16 with type 1 diabetes for 11 years.

What do you want to know? What are your concerns? What screening and health maintenance does he need? What anticipatory guidance do you give him?

H&P
• Insulin regimen (multiple daily injections or pump technology)
• Blood sugar log, glucometer, or continuous glucose meter data: How often is he checking? Any hypoglycemia?
• Adolescent issues: HEADSSS exam. (Risk for compliance problems and eating disorders)
• Exercise
• Exam: BP, growth chart review, thyroid, abdomen, injection sites (lipohypertrophy), wearing medical alert tag?, annual foot exam starting at puberty.

A&P
• Hemoglobin A1c q3 months (goal is <7.5% for all pediatrics)
• Annual labs: TSH, urine microalbumin, lipids (q5 years if LDL <100)
• Thyroid antibodies (thyroid peroxidase, antithyroglobulin) if not previously done
• Celiac screen if not previously done; consider repeat screening every 2-3 years
• Annual flu shot (must be injection); Pneumovax (23-valent) once until age 65
• Annual dilated eye exam (referral if needed)

Other
• Ensure adequate supply of medications and supplies, including glucagon kit
• If using a pump, review insulin back-up plan (Lantus dose in case of pump failure = total basal rate)
• Driving safety (prevention of hypoglycemia, check before driving, have snacks available)
• Revisit adolescent psychosocial concerns. Discuss importance of tobacco avoidance, the effects of alcohol on blood sugars (hypoglycemia), and prevention of STDs/contraception use. (For female patients, importance of BG control pre-conception and that any pregnancy be planned).
• Discuss dental care

Part II: Sick Day Management

Case 4: You are called by the mother of Hailey, an 11 year old girl with type 1 diabetes since age 5. She reports that Hailey has a sore throat, headache and fever to 102. Her glucometer read “HI” this morning but she was afraid to give Hailey insulin because she wouldn’t eat.

What do you want to know?
You want to know her usual dose of insulin, when it was last given, and if any ketones in the urine. You want to know if she is able to drink fluids, and how ill does she appear?

Hailey’s mother reports that she takes Lantus 15 units every night at bedtime and Novolog during the day for carb coverage and correction. She received her Lantus last night but has not had any Novolog today. She ran out of ketone strips. Hailey will drink but states that it hurts to do so.

**What advice would you give?**

- **Check her blood glucose every 2-4 hours.** May give correction doses of short-acting insulin (Novolog) every 3 hours as needed for hyperglycemia.
- **Encourage water intake.** As blood sugar comes into range, may drink sugar-containing liquids in lieu of solids at mealtime as desired.
- **Recommend she be seen in clinic to r/o strep throat; put in prescription for ketone test strips and instruct mother when/how to use.**
- **Remind mother if she begins vomiting to proceed directly to the emergency department.**

Hailey’s mother calls back later that evening to follow-up. She reports that Hailey has had frequent hyperglycemia throughout the day that required correction. Her mother used the current correction factor of 1:60 over 120 mg/dL.

**What else do you want to know? What instructions would you give?**

- Ask about mental status, abdominal pain, and ability to tolerate liquids.
- Check her blood glucose and urine dipstick for ketones. Continue to check urine for ketones any time BG is >300 when sick.
- Check blood glucose now and continue frequent blood glucose checks every q2-4hrs.
- Find out when insulin was last given.
- Calculate **sick day correction** using the current correction factor, then multiply the result by 1.5 to provide additional coverage. Give correction insulin but avoid “stacking” short-acting insulin.
- Continue increased fluid intake. Call on-call MD immediately if she begins vomiting, not tolerating PO, or develops moderate to large ketones which are not decreasing.

**How would your instructions differ in Hailey was using an insulin pump?**

- Suggest a temporary basal insulin rate with doses increased by 10-20% (units/hour of continuous short-acting insulin)
- Correction boluses calculated by the pump should be multiplied by 1.5
- Remember that hyperglycemia could be due to pump failure, most commonly a bad insertion site, in addition to concern for illness. If positive urine or blood ketones on a pump, assume pump/insertion site failure. Give a separate injection and restart the pump.
1. You are covering your group’s pediatric practice over the weekend. A mother calls you at 3 pm Saturday afternoon to tell you that her 9-year-old daughter wet the bed the night before, although she has not been enuretic since she was a toddler. She is tired and has been napping on and off all day. She also has been very thirsty for about a week, with increased thirst in the past day. The mother says she looked these symptoms up on the Internet and is worried that her daughter could have diabetes. On questioning, she reports that she has not noticed weight loss, and the girl’s appetite has been normal. A maternal great grandmother developed diabetes when she was 75 years old.

Of the following, the MOST appropriate action is to
A. arrange for blood tests and a urine culture at a local laboratory on Monday morning
B. arrange for her daughter to be seen as an outpatient on Sunday
C. reassure her and ask her to bring her daughter to the office on Monday
D. reassure her and ask her to come to the office if the symptoms persist for several days
E. tell her to bring her daughter to the local hospital emergency department immediately

More than 50% of children who have type 1 diabetes mellitus diagnosed in the United States are identified because of early symptoms and do not present initially in diabetic ketoacidosis. Early diagnosis is essential to preventing the serious consequences of uncompensated type 1 diabetes. Increased public awareness of the symptoms of diabetes can decrease further the number of children who present with diabetic ketoacidosis.

Most children who have type 1 diabetes do not have an affected family member. Initial symptoms of the disease are reflective of insulin deficiency, hyperglycemia, and glycosuria and include weight loss with increased appetite and thirst. Polyuria as a result of glycosuria may manifest as frequent nocturnal urination or as secondary enuresis. Anorexia, continued insatiable thirst, nausea, and vomiting are late manifestations of uncompensated diabetes associated with developing ketoacidosis. Coma and eventual death is the outcome of untreated severe hyperosmolar dehydration and acidosis.

The early diagnosis of diabetes can be particularly difficult in young children who still are in diapers and receive much of their nutrition in liquid form. Frequency of urination cannot be used as a marker of hydration in vomiting children who have diabetes because urination reflects the marked glycosuria and osmotic diuresis, not hydration status. Symptoms of type 1 diabetes can worsen rapidly, and diabetic ketoacidosis can develop within hours. Therefore, if diabetes is suspected, as suggested by the symptoms described for the girl in the vignette, the child’s blood and urine should be checked for glucose and ketones without delay. If glucose values are elevated, appropriate laboratory studies to define severity should be obtained, and the child should be treated promptly.

2. An 8-year-old boy with type 1 diabetes mellitus diagnosed 2 years ago presents for a follow-up visit. Review of systems is significant for increased fatigue and constipation, but he is otherwise doing well.
The boy’s physical examination is significant for height that has dropped from the tenth percentile last year to less than the third percentile this year. His examination is otherwise unremarkable. There is no goiter, skin changes, or abnormal findings at his insulin injection sites. His hemoglobin A1c level is 6.9%.

Of the following, the MOST likely explanation for his poor growth is
A. autoimmune hypothyroidism
B. celiac disease
C. gastroparesis
D. pernicious anemia
E. thyroid cancer

In addition to presenting with the typical features of type 1 diabetes mellitus, including polyuria, polydipsia, and polyphagia, children with type 1 diabetes are also at risk of developing additional autoimmune diseases. Thyroid disease is the most common autoimmune disorder associated with type 1 diabetes. About one-quarter of children with type 1 diabetes have thyroid autoantibodies at the time of diagnosis or will develop them within a few years of diagnosis. The presence of thyroid autoantibodies is predictive of thyroid dysfunction. Some studies have shown subclinical hypothyroidism to be associated with an increased risk of symptomatic hypoglycemia and reduced linear growth, so careful follow-up of thyroid function in children with type 1 diabetes is warranted.

Current American Diabetes Association (ADA) guidelines recommend that practitioners consider screening children with type 1 diabetes for antithyroid peroxidase and antithyroglobulin antibodies soon after diagnosis. In addition, thyroid-stimulating hormone (TSH) concentrations should be measured soon after diagnosis, once metabolic control has been established. TSH and thyroxine levels while a child is actively experiencing diabetic ketoacidosis or just diagnosed with type 1 diabetes may be most consistent with sick-euthyroid syndrome, and therefore will not be helpful. If these tests are sent shortly after diagnosis and are normal, the ADA guidelines recommend that practitioners consider rechecking them every 1 to 2 years, especially if the patient develops symptoms of thyroid dysfunction, thyromegaly, an abnormal growth rate, or unusual glycemic variation.

The International Society for Pediatric and Adolescent Diabetes (ISPAD) 2009 Consensus Guidelines for Children and Adolescents with Diabetes also recommend screening of thyroid function by measuring TSH and thyroid antibodies at diagnosis and every second year thereafter in asymptomatic individuals without goiter or in the absence of thyroid autoantibodies. More frequent assessment is indicated if antibodies are present or symptoms develop (e.g., poor growth or goiter). It is important for pediatricians to recognize that goiter may not be present in children with thyroid disease.

Many other autoimmune conditions are associated with type 1 diabetes. Celiac disease occurs with increased frequency in patients with type 1 diabetes (1%-16% of individuals compared with 0.3%-1% in the general population). Symptoms of celiac disease include diarrhea, weight loss or poor weight gain, growth failure, abdominal pain, chronic fatigue, malnutrition due to malabsorption, and unexplained hypoglycemia or erratic blood glucose concentrations. The ADA
recommends that practitioners consider screening children with type 1 diabetes for celiac disease soon after the diagnosis, as well as in cases with a positive family history of celiac disease, symptoms consistent with the diagnosis, or frequent unexplained hypoglycemia or deterioration in glycemic control. ISPAD guidelines are more stringent, and recommend screening at the time of diagnosis, annually for the first 5 years and every second year thereafter. Although the child in this vignette could have celiac disease, hypothyroidism occurs far more commonly and thus is the most likely explanation for his poor growth.

Gastrointestinal neuropathies, such as gastroparesis, should be considered in individuals with erratic glucose control or with upper gastrointestinal symptoms without other identified cause. However, this is rare in childhood, usually taking many years to develop. Pernicious anemia is also uncommon in children. It is seen more commonly in adults with type 1 diabetes, occurring in up to 8.5% of those with another autoimmune disease, such as hypothyroidism. Similarly, thyroid cancer is relatively uncommon in children.

The degree of glucose control and duration of diabetes mellitus are linked to long-term complication rates. In long-term (20-year) follow-up of patients with type 1 diabetes mellitus, extensive clinical trials have shown that glomerular filtration rate (and overall kidney function) is improved in patients treated with intensive insulin therapy earlier in their disease and correlates with the degree of glucose control. Other outcomes improve as well. Monitoring for associated disorders and long-term glucose control is important to minimize these complications. (PREP SA 2016 #219)

3. A 10-year-old girl with type 1 diabetes diagnosed at age 7 years is brought to your office for frequent episodes of hypoglycemia over the past 2 weeks. She has required oral treatment of low blood glucose levels on 8 separate occasions during this time frame. She is on a flexible basal-bolus insulin regimen with insulin glargine and aspart. Her total daily insulin dose typically averages 0.7 units/kg per day but has averaged 0.5 units/kg per day over the past 2 weeks. There have been no recent changes in her insulin regimen, and her hemoglobin A1c 2 months ago was 7.6%. The girl has had no fever or recent illness, but has been complaining of intermittent “stomach aches.” She participates in dance for 1 hour, 1 evening per week. Her physical examination reveals a temperature of 37°C, blood pressure of 102/64 mm Hg, heart rate of 72 beats/min, weight of 32 kg (40th percentile), height of 143 cm (65th percentile), and body mass index of 15.6 kg/m2 (25th percentile). Her weight is unchanged from that documented 8 months ago. The remainder of her physical examination findings are within normal parameters.

Of the following, the MOST likely cause of the girl’s hypoglycemia is

A. celiac disease
B. hypothyroidism
C. increased physical activity
D. insulin dosing errors
E. puberty

The girl described in the vignette most likely has celiac disease, presenting with recurrent hypoglycemia in the context of type 1 diabetes. Celiac disease is an autoimmune disease with an increased incidence in those with type 1 diabetes, occurring in about 5%. Her recurrent
hypoglycemia, "stomach aches," and lack of weight gain over the past 8 months are all consistent with celiac disease. Celiac disease is the second most common autoimmune disease associated with type 1 diabetes. The American Diabetes Association recommends screening for celiac disease at the time of diagnosis of type 1 diabetes, and rescreening as indicated for symptoms.

Hypothyroidism does not generally cause hypoglycemia in those with type 1 diabetes. Increased physical activity or insulin dosing errors could cause hypoglycemia, but there is no indication in the vignette that this girl’s physical activity level has changed or that insulin dosing errors are being made. Her hemoglobin A1c level measured 2 months ago suggests relatively good glycemic control at that time. Because puberty produces a natural state of insulin resistance, it is more often associated with high blood glucose levels, not hypoglycemia.

Autoimmune thyroid disease, especially Hashimoto thyroiditis with associated hypothyroidism, is the most common associated autoimmune disease seen in children with type 1 diabetes. Approximately one-third of these children have detectable thyroid antibodies and 10% have abnormal thyroid function. The American Diabetes Association recommends screening for thyroid disease with thyroid antibody (thyroid peroxidase, antithyroglobulin antibodies) and thyroid-stimulating hormone (TSH) levels at the time of diagnosis of type 1 diabetes, and rescreening TSH levels every 1 to 2 years.

Addison disease, due to autoimmune adrenal insufficiency, although rare, is the third most common associated autoimmune condition, occurring in less than 1% of pediatric patients with type 1 diabetes. There is no routine recommendation for screening for Addison disease in these children.

Hypoglycemia, in the context of type 1 diabetes, is defined as a blood glucose of less than 70 mg/dL (<3.9 mmol/L). Treatment uses the "rule of 15s": 15 g of fast-acting carbohydrate should be ingested and 15 minutes later the blood glucose level should be tested. Fifteen-gram “doses” of fast-acting carbohydrate include 1/2 cup of juice or regular soda, 1 cup of milk, 3 teaspoons of honey, or 3 to 4 glucose tablets. This treatment and glucose check should be repeated if the blood sugar remains lower than 70 mg/dL. If the next meal will not be eaten within the next 30 to 60 minutes, a small snack of complex carbohydrate, fat, and protein should be eaten to help sustain the blood glucose level. For more severe hypoglycemia, with an inability to take oral glucose, glucagon can be given intramuscularly or subcutaneously. Every patient with diabetes who takes insulin should have a glucagon emergency kit. (PREP SA 2018 #31)

4. You are seeing a 14-year-old boy for a preparticipation physical examination before the start of the school soccer season. He has a history of type 1 diabetes, diagnosed at age 11 years, with no known complications. His insulin regimen consists of insulin glargine 26 units at bedtime, and prandial aspart 1 unit for every 10 g of carbohydrate plus 1 unit for every 40 mg/dL (2.2 mmol/L) increase in his premeal blood glucose level above 120 mg/dL (6.6 mmol/L). His most recent hemoglobin A1c is 11%. A review of his glucometer data shows an average of 1 to 2 blood glucose checks per day, which range from 50 to 490 mg/dL (2.7–27.2 mmol/L). He states that he often forgets to take insulin because of his busy schedule, and when he does remember, he often takes his insulin after he eats. His physical examination findings are normal. His weight is 50 kg.
Of the following, the action MOST likely to help this adolescent achieve better glycemic control is to

A. counsel him on the long-term consequences of poor diabetes control
B. increase his glargine dose to 28 units at bedtime with follow-up in 1 week
C. instruct him to check and record at least 4 glucose levels per day with follow-up in 1 week
D. refer him to a nutritionist for instruction regarding low-carbohydrate snacks
E. switch his insulin administration to an insulin pump

The adolescent described in the vignette has uncontrolled type 1 diabetes and is not effectively integrating diabetes self-care into his daily routine. He checks his blood glucose only 1 to 2 times per day, often omits insulin doses, and frequently takes insulin after meals. These habits are not conducive to good glycemic control. The action most likely to help him achieve better glycemic control is to instruct him to check and record at least 4 glucose levels per day, and conduct a follow-up review of his glucose log in 1 week. Studies have shown a direct correlation between frequency of blood glucose monitoring and better glycemic control. Checking blood glucose more frequently will help him establish a better diabetes self-care routine, and allow for more opportunities to respond to blood glucose levels that are not in the goal range. Follow-up review of his glucose log will help his physician determine if insulin dose changes are needed or if he needs other assistance with diabetes management. It also provides the opportunity to further educate the boy on interpreting his blood glucose patterns.

For those on multiple-dose insulin regimens, as is this boy, the American Diabetes Association (ADA) recommends blood glucose measurement before meals and snacks, at bedtime, before exercise, for suspected hypoglycemia, and before driving. Prandial insulin should be taken before meals to best match the onset of insulin action with rising blood glucose.

The ADA-recommended hemoglobin A1c goal is less than 7.5% for all pediatric age groups. Achieving good glycemic control is important in preventing long-term complications. These complications include macrovascular and microvascular disease, manifested as nephropathy, retinopathy, and neuropathy. Although the boy in the vignette needs to understand the importance of good glycemic control, research shows that behavior change is unlikely in response to solely counseling him on the long-term consequences of poor diabetes control.

The boy may require adjustments in his insulin regimen, but at this office visit, not enough good-quality glucose data are available to make an informed adjustment. Thus, increasing his glargine dose to 28 units at bedtime is not the best action to take. Similarly, switching his insulin administration to an insulin pump would change the insulin delivery mechanism, but would not address the need to integrate basic diabetes self-care into the boy’s daily routine.

Carbohydrate counting, avoiding simple sugars, and eating a well-balanced diet are also important contributors to good glycemic control. Although eating low- or non-carbohydrate snacks can obviate the need for an insulin injection to cover the snack, referring the boy in the vignette to a nutritionist for instruction on low-carbohydrate snacks is of lower priority than the need for more frequent glucose monitoring. (PREP SA 2018 #211)
5. The parents of a 12-year-old girl in whom you recently diagnosed type 1 diabetes mellitus ask you about potential long-term complications. In your discussion, you stress the importance of blood glucose control to prevent complications and review risk factors for diabetes complications, including hyperglycemia and tobacco smoking.

Of the following, the MOST important additional risk factor for diabetes complications is
A. celiac disease
**B. hypertension**
C. hypothyroidism
D. lack of regular exercise
E. undernutrition

The Diabetes Control and Complications Trial (DCCT) results, published in 1994, demonstrated unambiguously that glycemic control directly correlates with the long-term prevention of complications of diabetes mellitus type 1 (DM1). However, additional risk factors, such as hypertension and cigarette smoking, are almost as important as hyperglycemia in the development of diabetes complications.

Celiac disease occurs in approximately 6% of individuals who have DM1 in North America and may hamper diabetes control because of malabsorption of nutrients. It is also a risk factor for poor bone mineralization in individuals who have DM1. However, it does not alter the risk of long-term complications directly. Hypothyroidism due to chronic lymphocytic thyroiditis may develop in 5% or more of people who have DM1, but it is not an independent risk factor for cardiovascular or other DM1 complications unless it is chronically untreated and affects lipid metabolism. Lack of regular exercise has been associated with an increase in cardiovascular risk factors for children who have DM1, but it has not yet been correlated directly with the development of long-term complications. Undernutrition, unless it is the result of poor diabetes control, has not been correlated with long-term complications of diabetes.

6. The mother of an 8 y/o boy in whom you diagnosed type 1 diabetes 2 months ago calls your office for advice. There has been a gastroenteritis outbreak in the boy’s school and 2 days ago he developed fever, vomiting, and diarrhea. His is no longer interested in eating but is able to drink. She reports his blood sugar measurement as 205 mg/dL.

His insulin regimen includes 15 units of glargine insulin administered daily at bedtime and aspart insulin administered before meals (1 unit per 15 gm carb) and for correction of high blood sugar (1 unit for every 25 mg/dL above 125 mg/dL).

Of the following, the MOST appropriate next step is to
A. Administer 0.1 units/kg regular insulin SQ
B. Administer 0.1 units/kg/hour regular insulin IV
C. Administer 4 units SQ aspart based on his blood sugar
**D. Check for urine ketones**
E. Discontinue glargine until he is able to eat normally
The primary defect in type 1 diabetes is the complete destruction of insulin-producing beta cells. Because affected patients manufacture no endogenous insulin, they require exogenous insulin to prevent fatty acid metabolism (and the resulting ketoacidosis), regardless of their blood glucose value. Accordingly, patients who have type 1 diabetes must always take insulin, even if they are fasting. Furthermore, whenever an affected child has a vomiting illness, such as the boy described in the vignette, urine must be assessed for ketones to be sure that ketosis is not occurring. This boy has mild hyperglycemia (blood glucose of 205 mg/dL) and is using a glargine-based regimen. Because glargine is a 24-hour-acting insulin with a minimal peak effect, his risk of hypoglycemia is minimal. The boy should continue on his usual glargine dose and check his urine for ketones. Regardless of blood glucose values, the presence of more than trace ketones in the urine always indicates a physiologic need for more insulin.

Discontinuing the boy’s glargine insulin could result in severe ketoacidosis once his previous glargine dose is metabolized. He does not require additional regular or rapid-acting (aspart) insulin at this point because his blood glucose is only mildly elevated and he is not eating. If he does have evidence of ketones, 15-25% of his total daily dose of insulin should be administered as an additional subcutaneous injection of regular or rapid-acting insulin to stop further ketosis. Children who have ketosis and are unable to consume carbohydrates may need intravenous fluids and dextrose to maintain normal blood glucose concentrations while they receive additional insulin to resolve the ketosis. (PREP SA 2012 #253)